Emilio Muñoz CerÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7898684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Concentrator PhotoVoltaics efficiencies: Present status and forecast. Renewable and Sustainable Energy Reviews, 2011, 15, 1810-1815.	8.2	161
2	Assessment of cost-competitiveness and profitability of fixed and tracking photovoltaic systems: The case of five specific sites. Renewable Energy, 2019, 134, 902-913.	4.3	60
3	Energy and economic analysis for large-scale integration of small photovoltaic systems in buildings: The case of a public location in Southern Spain. Renewable and Sustainable Energy Reviews, 2011, 15, 4310-4319.	8.2	54
4	The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile. Renewable and Sustainable Energy Reviews, 2021, 151, 111557.	8.2	49
5	Evolution of the cost and economic profitability of grid-connected PV investments in Spain: Long-term review according to the different regulatory frameworks approved. Renewable and Sustainable Energy Reviews, 2016, 66, 233-247.	8.2	48
6	Comparison of two PV array models for the simulation of PV systems using five different algorithms for the parameters identification. Renewable Energy, 2016, 99, 270-279.	4.3	46
7	Grid parity and self-consumption with photovoltaic systems under the present regulatory framework in Spain: The case of the University of Jaén Campus. Renewable and Sustainable Energy Reviews, 2014, 33, 752-771.	8.2	44
8	Analysis of the Performance of Various PV Module Technologies in Peru. Energies, 2019, 12, 186.	1.6	42
9	Environmental Impact Assessment of crystalline solar photovoltaic panels' End-of-Life phase: Open and Closed-Loop Material Flow scenarios. Sustainable Production and Consumption, 2020, 23, 157-173.	5.7	35
10	Cradle-to-cradle approach in the life cycle of silicon solar photovoltaic panels. Journal of Cleaner Production, 2017, 168, 51-59.	4.6	33
11	CPV standardization: An overview. Renewable and Sustainable Energy Reviews, 2010, 14, 518-523.	8.2	29
12	Feasibility evaluation of residential photovoltaic self-consumption projects in Peru. Renewable Energy, 2019, 136, 414-427.	4.3	25
13	Lessons learned from the field analysis of PV installations in the Saharawi refugee camps after 10 years of operation. Renewable and Sustainable Energy Reviews, 2018, 93, 100-109.	8.2	24
14	Influence of Operation and Maintenance expenditures in the feasibility of photovoltaic projects: The case of a tracking pv plant in Spain. Energy Policy, 2018, 121, 506-518.	4.2	22
15	Effects of renewable energy on landscape in Europe: Comparison of hydro, wind, solar, bio-, geothermal and infrastructure energy landscapes. Hungarian Geographical Bulletin, 2019, 68, 317-339.	0.4	20
16	A set of principles for applying Circular Economy to the PV industry: Modeling a closed-loop material cycle system for crystalline photovoltaic panels. Sustainable Production and Consumption, 2021, 28, 164-179.	5.7	17
17	Sale of profitable but unaffordable PV plants in Spain: Analysis of a real case. Energy Policy, 2018, 117, 279-294.	4.2	16
18	Complete Procedure for the Economic, Financial and Cost-Competitiveness of Photovoltaic Systems with Self-Consumption. Energies, 2019, 12, 345.	1.6	16

Emilio Muñoz Cerón

#	Article	IF	CITATIONS
19	How much solar PV, wind and biomass energy could be implemented in short-term? A multi-criteria GIS-based approach applied to the province of Jaén, Spain. Journal of Cleaner Production, 2022, 366, 132920.	4.6	14
20	Identifying barriers and opportunities in the deployment of the residential photovoltaic prosumer segment in Chile. Sustainable Cities and Society, 2021, 69, 102824.	5.1	12
21	Experimental set-up for testing MJ photovoltaic cells under ultra-high irradiance levels with temperature and spectrum control. Measurement: Journal of the International Measurement Confederation, 2020, 165, 108092.	2.5	9
22	Typical Daily Profiles, a novel approach for photovoltaics performance assessment: Case study on large-scale systems in Chile. Solar Energy, 2021, 225, 357-374.	2.9	9
23	Spectral characterization of the solar resource of a sunny inland site for flat plate and concentrating PV systems. Renewable Energy, 2017, 101, 1169-1179.	4.3	6
24	Analysis and Performance of a Two-Axis PV Tracker in Southern Spain. Journal of Solar Energy Engineering, Transactions of the ASME, 2011, 133, .	1.1	5
25	Efficiencies and Energy Balance in High-Concentrator Photovoltaic Devices. Green Energy and Technology, 2015, , 239-260.	0.4	5
26	Spatial Energy Planning: A Review. Energies, 2020, 13, 5379.	1.6	5
27	Identification of Educational Models That Encourage Business Participation in Higher Education Institutions. Sustainability, 2020, 12, 8421.	1.6	4
28	Estimation of the effective nominal power of a photovoltaic generator under non-ideal operating conditions. Solar Energy, 2022, 231, 784-792.	2.9	3
29	Large-Scale Photovoltaic Power Plants. World Scientific Series in Current Energy Issues, 2016, , 125-169.	0.1	2
30	Estudio del efecto del polvo y estimaciÃ ³ n de la potencia nominal en un string fotovoltaico. Revista TECNIA, 2020, 30, 27-33.	0.1	2
31	Proposal Of A Spanish CPV Feed-in Tariff. , 2010, , .		1
32	On-site measurement of limiting subcell in multijunction solar devices. , 2012, , .		1
33	Photovoltaic road and rail noise barriers at different environmental and soil conditions, including mining terrains. E3S Web of Conferences, 2019, 106, 01008.	0.2	1
34	Characterization in power and energy of two photovoltaic grid connected systems of different technologies (crystal silicon and thin film), operating in Lima. Journal of Physics: Conference Series, 2019, 1173, 012011.	0.3	1
35	The Role of Renewable Energy in the Transition Toward a Fully Sustainable Energy System in Chile Across Power, Heat, Transport and Desalination Sectors. , 2019, , .		1
36	Preliminary Economic Evaluation of the First Grid-Connected Photovoltaic System in the Aysén Region Under the Current Law of Distributed Generation in Chile. , 2018, , .		0

#	Article	IF	CITATIONS
37	Performance Evaluation and Characterization of Different Photovoltaic Technologies Under the Coastal, Desertic Climate Conditions of Lima, Peru. , 2019, , .		0
38	Modeling of the Nominal Power of a PV Generator Under Clear and Cloudy sky Conditions. , 2019, , .		0
39	TOP-DOWN APPROACH OF A PBL PROJECT APPLIED TO THE INTEGRATION OF RENEWABLE ENERGIES IN AN EDUCATIONAL BUILDING. RESULTS OF A JOINT EXPERIMENTAL COLLABORATION BETWEEN HIGH-SCHOOL AND UNIVERSITY LEVELS. INTED Proceedings, 2019, , .	0.0	0
40	Procedimiento del cálculo de la potencia nominal de un generador fotovoltaico. Revista TECNIA, 2020, 30, 22-26.	0.1	0
41	PV generator nominal power estimation using a ground sensor and the PVLIB online irradiance database. Journal of Physics: Conference Series, 2022, 2180, 012005.	0.3	0
42	Is the information provided by free satellite sources suitable for predicting or evaluating the performance of photovoltaic systems in Peru? (In memoriam to Heinrich Berg). Journal of Physics: Conference Series, 2022, 2180, 012016.	0.3	0