Hasan Ahmad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7898594/publications.pdf

Version: 2024-02-01

		516710	5	552781	
55	852	16		26	
papers	citations	h-index		g-index	
55	55	55		947	
33	33	33		247	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Synthesis of Biomimetic Poly(2-(methacryloyloxy)ethyl phosphorylcholine) Nanolatexes via Atom Transfer Radical Dispersion Polymerization in Alcohol/Water Mixtures. Macromolecules, 2010, 43, 6321-6329.	4.8	67
2	Magnetically doped multi stimuli-responsive hydrogel microspheres with IPN structure and application in dye removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459, 39-47.	4.7	65
3	Biocompatible microcrystalline cellulose particles from cotton wool and magnetization via a simple in situ co-precipitation method. Carbohydrate Polymers, 2017, 170, 72-79.	10.2	43
4	Preparation of Micrometer-Sized, Monodisperse "Janus―Composite Polymer Particles Having Temperature-Sensitive Polymer Brushes at Half of the Surface by Seeded Atom Transfer Radical Polymerization. Langmuir, 2008, 24, 688-691.	3.5	41
5	Ag impregnated sub-micrometer crystalline jute cellulose particles: Catalytic and antibacterial properties. Carbohydrate Polymers, 2020, 233, 115842.	10.2	35
6	Core-shell structured epoxide functional NiO/SiO2 nanocomposite particles and photocatalytic decolorization of congo red aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 783-792.	4.7	34
7	Celluloses as support materials for antibacterial agents: a review. Cellulose, 2021, 28, 2715-2761.	4.9	34
8	Mesoporous magnetic silica particles modified with stimuli-responsive P(NIPAM–DMA) valve for controlled loading and release of biologically active molecules. Soft Matter, 2018, 14, 5469-5479.	2.7	30
9	Silica coating of iron oxide magnetic nanoparticles by reverse microemulsion method and their functionalization with cationic polymer P(NIPAm-co-AMPTMA) for antibacterial vancomycin immobilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125857.	4.7	29
10	Incorporation of iron oxide nanoparticles into temperature-responsive poly (N-isopropylacrylamide-co-acrylic acid) P (NIPAAm-AA) polymer hydrogel. Journal of Polymer Research, 2015, 22, 1.	2.4	26
11	Single step modification of micrometerâ€sized polystyrene particles by electromagnetic polyaniline and sorption of chromium(VI) metal ions from water. Journal of Applied Polymer Science, 2019, 136, 47524.	2.6	26
12	Synthesis of Biocompatible Sterically-Stabilized Poly(2-(methacryloyloxy)ethyl phosphorylcholine) Latexes via Dispersion Polymerization in Alcohol/Water Mixtures. Langmuir, 2009, 25, 11442-11449.	3.5	25
13	Preparation and characterization of magnetic \hat{I}^3 -Al2O3 ceramic nanocomposite particles with variable Fe3O4 content and modification with epoxide functional polymer. Ceramics International, 2018, 44, 3951-3959.	4.8	25
14	A simple route to synthesize conductive stimuli-responsive polypyrrole nanocomposite hydrogel particles with strong magnetic properties and their performance for removal of hexavalent chromium ions from aqueous solution. Journal of Magnetism and Magnetic Materials, 2016, 412, 15-22.	2.3	22
15	Magnetically responsive antibacterial nanocrystalline jute cellulose nanocomposites with moderate catalytic activity. Carbohydrate Polymers, 2021, 251, 117024.	10.2	18
16	Supported nanocatalysts: recent developments in microwave synthesis for application in heterogeneous catalysis. Materials Advances, 2022, 3, 859-887.	5.4	17
17	Magnetic and temperature-sensitive composite polymer particles and adsorption behavior of emulsifiers and trypsin. Macromolecular Research, 2008, 16, 637-643.	2.4	16
18	Mesoporous electromagnetic composite particles: Electric current responsive release of biologically active molecules and antibacterial properties. Colloids and Surfaces B: Biointerfaces, 2019, 181, 85-93.	5.0	16

#	Article	IF	Citations
19	Hydrophobic poly(lauryl methacrylate)â€coated magnetic nanoâ€composite particles for removal of organic pollutants. Polymers for Advanced Technologies, 2015, 26, 408-413.	3.2	15
20	Composite polymer particles with stimuli-responsive surface properties and specific activity of adsorbed/released trypsin. Colloid and Polymer Science, 2007, 285, 715-720.	2.1	14
21	Cationic polyelectrolyte grafted mesoporous magnetic silica composite particles for targeted drug delivery and thrombolysis. Materialia, 2020, 11, 100676.	2.7	14
22	Celluloses as Green Support of Palladium Nanoparticles for Application in Heterogeneous Catalysis: A Brief Review. Journal of Cluster Science, 2022, 33, 421-438.	3.3	14
23	Novel Magnetically Doped Epoxide Functional Cross-linked Hydrophobic Poly(lauryl methacrylate) Composite Polymer Particles for Removal of As(III) from Aqueous Solution. Industrial & Engineering Chemistry Research, 2017, 56, 7747-7756.	3.7	13
24	Mesoporous amine functionalized SiO2 supported Cu nanocatalyst and a kinetic-mechanistic degradation study of azo dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617, 126403.	4.7	13
25	Magnetic Polyaniline Composites: Recent Developments in Preparation, Properties and Applications. Journal of Colloid Science and Biotechnology, 2013, 2, 155-170.	0.2	13
26	Nickel decorated melamine-formaldehyde resin/polyaniline composites for high specific capacitance. Materials Chemistry and Physics, 2020, 249, 122957.	4.0	12
27	Biocomposites of synthetic polymer modified microcrystalline jute cellulose particles and their hemolytic behavior. Cellulose, 2019, 26, 8713-8727.	4.9	11
28	Structural conformation of biomolecules released from temperature-sensitive composite polymer particles - a study by circular dichroism. Colloid and Polymer Science, 2002, 280, 310-315.	2.1	10
29	Influence of the third monomer on lauryl methacrylate–methyl methacrylate emulsion terpolymerization. Colloid and Polymer Science, 2013, 291, 2111-2120.	2.1	10
30	Surface modification of temperature-responsive polymer particles by an electrically conducting polyaniline shell layer. Polymer International, 2014, 63, 667-673.	3.1	10
31	Cumulative effect of hydrophobic PLMA and surface epoxide groups in composite polymer particles on adsorption behavior of congo red and direct red-75. Arabian Journal of Chemistry, 2019, 12, 4989-4999.	4.9	10
32	Amine functional silica–supported bimetallic Cu-Ni nanocatalyst and investigation of some typical reductions of aromatic nitro-substituents. Colloid and Polymer Science, 2022, 300, 279-296.	2.1	10
33	Vancomycin conjugated iron oxide nanoparticles for magnetic targeting and efficient capture of Gram-positive and Gram-negative bacteria. RSC Advances, 2021, 11, 36319-36328.	3.6	10
34	Magnetite incorporated amine-functional SiO2 support for bimetallic Cu-Ni alloy nanoparticles produced highly effective nanocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129044.	4.7	10
35	A simple <i>in situ</i> synthesis of iron oxide magnetic nanoparticles embedded in thermosensitive polymer for DNA capture. Journal of Materials Research, 2020, 35, 2441-2450.	2.6	9
36	Novel carboxyl functional spherical electromagnetic polypyrrole nanocomposite polymer particles with good magnetic and conducting properties. Polymer International, 2016, 65, 1179-1186.	3.1	8

3

#	Article	IF	Citations
37	A facile one-pot synthesis of poly(acrylic acid)-functionalized magnetic iron oxide nanoparticles for suppressing reactive oxygen species generation and adsorption of biocatalyst. Materials Research Express, 2020, 7, 016102.	1.6	8
38	Synthesis and characterization of dualâ€responsive micrometerâ€sized coreâ€shell composite polymer particles. Polymers for Advanced Technologies, 2008, 19, 181-185.	3.2	7
39	Zwitterionic poly(2-(methacryloyloxy) ethyl phosphorylcholine) coated mesoporous silica particles and doping with magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 80-87.	4.7	7
40	<l>A Special Issue on</l> Polymer and Hybrid Particles for Biomedical Applications. Journal of Colloid Science and Biotechnology, 2013, 2, 153-154.	0.2	7
41	Preparation of hydrophobic polymer particles by radical polymerization and subsequent modification into magnetically doped particles. Journal of Applied Polymer Science, 2013, 127, 620-627.	2.6	6
42	Biocompatible SiO2in the Fabrication of Stimuli-Responsive Hybrid Composites and Their Application Potential. Journal of Chemistry, 2015, 2015, 1-19.	1.9	6
43	Encapsulation of submicron-sized silica particles by stimuli-responsive copolymer shell layer. Macromolecular Research, 2010, 18, 247-253.	2.4	5
44	Epoxide functionalized γâ€Al ₂ O ₃ /Fe ₃ O ₄ /SiO ₂ nanocomposite and comparative adsorption behavior of a model reactive azo dye. International Journal of Applied Ceramic Technology, 2019, 16, 1239-1252.	2.1	5
45	Monodispersed Carboxylated Composite Polymer Microspheres and Physical Immobilization of Biomolecules. Polymer Journal, 2007, 39, 428-434.	2.7	4
46	Magnetite loaded cross-linked polystyrene composite particles prepared by modified suspension polymerization and their potential use as adsorbent for arsenic(III). Macromolecular Research, 2017, 25, 671-679.	2.4	4
47	Evaluating the performance of citric acid as stabilizer and doping agent in an environment friendly approach to prepare electromagnetic nanocomposite particles. Polymer Composites, 2018, 39, 4628-4636.	4.6	4
48	Carboxyl functionalized poly(methyl methacrylate-acrylic acid-ethylene glycol dimethacrylate) copolymer particles and their amination with amine-nucleophiles. E-Polymers, 2008, 8, .	3.0	3
49	Carboxylic acid modified pH-responsive composite polymer particles. Journal of Polymer Engineering, 2019, 39, 671-678.	1.4	3
50	Precipitation polymerization in mixed monomer–solvent droplets. Journal of Applied Polymer Science, 2015, 132, .	2.6	2
51	Physico-chemical, Antioxidant and Antimicrobial Investigation on New Mixed Ligand Complexes Containing bis(2,4,4-trimethylpentyl)dithiophosphinic acid and 2,2′-bipyridine. Oriental Journal of Chemistry, 2018, 34, 1213-1221.	0.3	2
52	Activity of Trypsin Adsorbed on Temperature and pH-Responsive Micron-Sized PS/P(NIPAM-MAA-MBAAm) Composite Polymer Particles. Journal of Applied Sciences, 2008, 8, 352-357.	0.3	2
53	Solvency effect of the dispersion medium on the radical polymerization of styrene in non-aqueous dispersion media. E-Polymers, 2007, 7, .	3.0	1
54	A generalized technique for the encapsulation of nanoâ€sized NiO particles by styreneâ€2â€hydroxyethyl methacrylate copolymer. Polymers for Advanced Technologies, 2015, 26, 1047-1052.	3.2	1

#	Article	IF	CITATIONS
55	Emulsion copolymerization of hydrophobic and hydrophilic monomers: an experimental study with styrene and 2- hydroxyethyl methacrylate. E-Polymers, 2006, 6, .	3.0	0