Hong-bo Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/7898235/hong-bo-li-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

70 2,017 27 43 g-index

71 2,546 9.8 5 L-index

#	Paper	IF	Citations
70	Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. <i>Science of the Total Environment</i> , 2012 , 424, 88-96	10.2	303
69	Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. <i>Environmental Pollution</i> , 2017 , 220, 514-522	9.3	98
68	Contamination and source differentiation of Pb in park soils along an urban-rural gradient in Shanghai. <i>Environmental Pollution</i> , 2011 , 159, 3536-44	9.3	82
67	Assessment of in vitro lead bioaccessibility in house dust and its relationship to in vivo lead relative bioavailability. <i>Environmental Science & Environmental Science & Env</i>	10.3	81
66	Lead bioaccessibility in 12 contaminated soils from China: Correlation to lead relative bioavailability and lead in different fractions. <i>Journal of Hazardous Materials</i> , 2015 , 295, 55-62	12.8	76
65	A label-free and portable graphene FET aptasensor for children blood lead detection. <i>Scientific Reports</i> , 2016 , 6, 21711	4.9	70
64	Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. <i>Science of the Total Environment</i> , 2017 , 581-582, 689-6	69 ^{10.2}	60
63	Influence of pollution control on lead inhalation bioaccessibility in PM2.5: A case study of 2014 Youth Olympic Games in Nanjing. <i>Environment International</i> , 2016 , 94, 69-75	12.9	54
62	Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks. <i>Science of the Total Environment</i> , 2012 , 432, 202-9	10.2	52
61	Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils. <i>Environment International</i> , 2016 , 94, 600-606	12.9	51
60	Mechanisms of arsenic disruption on gonadal, adrenal and thyroid endocrine systems in humans: A review. <i>Environment International</i> , 2016 , 95, 61-8	12.9	50
59	Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata. <i>Environmental Pollution</i> , 2017 , 227, 569-577	9.3	49
58	Effect of lead pollution control on environmental and childhood blood lead level in Nantong, China: an interventional study. <i>Environmental Science & Environmental Environmen</i>	10.3	43
57	Arsenic bioaccessibility in contaminated soils: Coupling in vitro assays with sequential and HNO3 extraction. <i>Journal of Hazardous Materials</i> , 2015 , 295, 145-52	12.8	42
56	Bacterial community composition at anodes of microbial fuel cells for paddy soils: the effects of soil properties. <i>Journal of Soils and Sediments</i> , 2015 , 15, 926-936	3.4	41
55	Arsenic Relative Bioavailability in Contaminated Soils: Comparison of Animal Models, Dosing Schemes, and Biological End Points. <i>Environmental Science & Environmental Science</i>	10.3	39
54	Arsenic Relative Bioavailability in Rice Using a Mouse Arsenic Urinary Excretion Bioassay and Its Application to Assess Human Health Risk. <i>Environmental Science & Description of Manager (No. 1988)</i> , 2017, 51, 4689-469	6 ^{10.3}	38

53	Applying Cadmium Relative Bioavailability to Assess Dietary Intake from Rice to Predict Cadmium Urinary Excretion in Nonsmokers. <i>Environmental Science & Environmental Scienc</i>	10.3	37
52	In vitro bioaccessibility and in vivo relative bioavailability in 12 contaminated soils: Method comparison and method development. <i>Science of the Total Environment</i> , 2015 , 532, 812-20	10.2	35
51	Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: Changes in microbial community compositions. <i>Atmospheric Environment</i> , 2018 , 174, 171-179	5.3	35
50	Effect of phosphate amendment on relative bioavailability and bioaccessibility of lead and arsenic in contaminated soils. <i>Journal of Hazardous Materials</i> , 2017 , 339, 256-263	12.8	34
49	Childhood lead exposure in an industrial town in China: coupling stable isotope ratios with bioaccessible lead. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	32
48	Correlation of in vivo relative bioavailability to in vitro bioaccessibility for arsenic in household dust from China and its implication for human exposure assessment. <i>Environmental Science & Environmental Science & Technology</i> , 2014 , 48, 13652-9	10.3	30
47	Arsenic, lead, and cadmium bioaccessibility in contaminated soils: Measurements and validations. <i>Critical Reviews in Environmental Science and Technology</i> , 2020 , 50, 1303-1338	11.1	30
46	Arsenic extraction and speciation in plants: Method comparison and development. <i>Science of the Total Environment</i> , 2015 , 523, 138-45	10.2	29
45	Oral Bioavailability of As, Pb, and Cd in Contaminated Soils, Dust, and Foods based on Animal Bioassays: A Review. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	28
44	Pulmonary bioaccessibility of trace metals in PM from different megacities simulated by lung fluid extraction and DGT method. <i>Chemosphere</i> , 2019 , 218, 915-921	8.4	28
43	Comparison of arsenic bioaccessibility in housedust and contaminated soils based on four in vitro assays. <i>Science of the Total Environment</i> , 2015 , 532, 803-11	10.2	27
42	Mineral Dietary Supplement To Decrease Cadmium Relative Bioavailability in Rice Based on a Mouse Bioassay. <i>Environmental Science & Environmental Scie</i>	10.3	24
41	Using the SBRC Assay to Predict Lead Relative Bioavailability in Urban Soils: Contaminant Source and Correlation Model. <i>Environmental Science & Environmental Science & Envir</i>	10.3	23
40	Coupling bioavailability and stable isotope ratio to discern dietary and non-dietary contribution of metal exposure to residents in mining-impacted areas. <i>Environment International</i> , 2018 , 120, 563-571	12.9	23
39	Spatial distribution and historical records of mercury sedimentation in urban lakes under urbanization impacts. <i>Science of the Total Environment</i> , 2013 , 445-446, 117-25	10.2	22
38	Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish. <i>Environmental Pollution</i> , 2015 , 205, 145-52	9.3	21
37	Arsenic Concentrations, Speciation, and Localization in 141 Cultivated Market Mushrooms: Implications for Arsenic Exposure to Humans. <i>Environmental Science & Exposure & Exposure & Environmental Science & Exposure & Exposure & Environmental & Environmental & Exposure & Expos</i>	110.3	21
36	Variability in responses of bacterial communities and nitrogen oxide emission to urea fertilization among various flooded paddy soils. <i>FEMS Microbiology Ecology</i> , 2015 , 91,	4.3	20

35	Seasonal Levels, Sources, and Health Risks of Heavy Metals in Atmospheric PM2.5 from Four Functional Areas of Nanjing City, Eastern China. <i>Atmosphere</i> , 2019 , 10, 419	2.7	19
34	Arsanilic acid contributes more to total arsenic than roxarsone in chicken meat from Chinese markets. <i>Journal of Hazardous Materials</i> , 2020 , 383, 121178	12.8	18
33	Lead Relative Bioavailability in Lip Products and Their Potential Health Risk to Women. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	17
32	The effects of mariculture activities on the adsorption/desorption and chemical fractionations of mercury on sediments. <i>Marine Pollution Bulletin</i> , 2012 , 64, 836-43	6.7	16
31	An interventional study of rice for reducing cadmium exposure in a Chinese industrial town. <i>Environment International</i> , 2019 , 122, 301-309	12.9	16
30	Lead relative bioavailability in soils based on different endpoints of a mouse model. <i>Journal of Hazardous Materials</i> , 2017 , 326, 94-100	12.8	15
29	Food influence on lead relative bioavailability in contaminated soils: Mechanisms and health implications. <i>Journal of Hazardous Materials</i> , 2018 , 358, 427-433	12.8	15
28	Contamination, source, and input route of polycyclic aromatic hydrocarbons in historic wastewater-irrigated agricultural soils. <i>Journal of Environmental Monitoring</i> , 2012 , 14, 3076-85		14
27	In-vitro human lung cell injuries induced by urban PM during a severe air pollution episode: Variations associated with particle components. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 206, 11	1 <i>4</i> 06	14
26	As, Cd, and Pb relative bioavailability in contaminated soils: Coupling mouse bioassay with UBM assay. <i>Environment International</i> , 2019 , 130, 104875	12.9	13
25	Thyrotoxicity of arsenate and arsenite on juvenile mice at organism, subcellular, and gene levels under low exposure. <i>Chemosphere</i> , 2017 , 186, 580-587	8.4	13
24	Temporal dynamics of urbanization-driven environmental changes explored by metal contamination in surface sediments in a restoring urban wetland park. <i>Journal of Hazardous Materials</i> , 2016 , 309, 228-35	12.8	12
23	Linking elevated blood lead level in urban school-aged children with bioaccessible lead in neighborhood soil. <i>Environmental Pollution</i> , 2020 , 261, 114093	9.3	10
22	Antagonistic Interactions between Arsenic, Lead, and Cadmium in the Mouse Gastrointestinal Tract and Their Influences on Metal Relative Bioavailability in Contaminated Soils. <i>Environmental Science & Eamp; Technology</i> , 2019 , 53, 14264-14272	10.3	10
21	In vitro assessments of bioaccessibility and bioavailability of PM trace metals in respiratory and digestive systems and their oxidative potential. <i>Journal of Hazardous Materials</i> , 2021 , 409, 124638	12.8	10
20	The Influence of Food on the Bioavailability of DDT and Its Metabolites in Soil. <i>Environmental Science & Environmental Scienc</i>	10.3	9
19	Pteris vittata coupled with phosphate rock effectively reduced As and Cd uptake by water spinach from contaminated soil. <i>Chemosphere</i> , 2020 , 247, 125916	8.4	8
18	Diversity and Characterization of Potential H2-Dependent Fe(III)-Reducing Bacteria in Paddy Soils. <i>Pedosphere</i> , 2012 , 22, 673-680	5	8

LIST OF PUBLICATIONS

17	Lead bioavailability in different fractions of mining- and smelting-contaminated soils based on a sequential extraction and mouse kidney model. <i>Environmental Pollution</i> , 2020 , 262, 114253	9.3	7
16	Adverse health effects of lead exposure on physical growth, erythrocyte parameters and school performances for school-aged children in eastern China. <i>Environment International</i> , 2020 , 145, 106130	12.9	7
15	Metals in paints on chopsticks: Solubilization in simulated saliva, gastric, and food solutions and implication for human health. <i>Environmental Research</i> , 2018 , 167, 299-306	7.9	6
14	Comparison of in vitro models in a mice model and investigation of the changes in Pb speciation during Pb bioavailability assessments. <i>Journal of Hazardous Materials</i> , 2020 , 388, 121744	12.8	6
13	Antibiotic exposure decreases soil arsenic oral bioavailability in mice by disrupting ileal microbiota and metabolic profile. <i>Environment International</i> , 2021 , 151, 106444	12.9	6
12	Investigating Lead Species and Bioavailability in Contaminated Soils: Coupling DGT Technique with Artificial Gastrointestinal Extraction and in Vivo Bioassay. <i>Environmental Science & amp; Technology</i> , 2019 , 53, 5717-5724	10.3	5
11	Geogenic nickel exposure from food consumption and soil ingestion: A bioavailability based assessment. <i>Environmental Pollution</i> , 2020 , 265, 114873	9.3	4
10	Straw decreased N2O emissions from flooded paddy soils via altering denitrifying bacterial community compositions and soil organic carbon fractions. <i>FEMS Microbiology Ecology</i> , 2020 , 96,	4.3	3
9	An interlaboratory evaluation of the variability in arsenic and lead relative bioavailability when assessed using a mouse bioassay. <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2021 , 84, 593-607	3.2	3
8	Arsenic bioaccessibility in rice grains via modified physiologically-based extraction test (MPBET): Correlation with mineral elements and comparison with As relative bioavailability. <i>Environmental Research</i> , 2021 , 198, 111198	7.9	2
7	Cadmium oral bioavailability is affected by calcium and phytate contents in food: Evidence from leafy vegetables in mice. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127373	12.8	2
6	Leaching and Bioavailability of Antimony in PET Bottled Beverages. <i>Environmental Science & Environmental Science & Technology</i> , 2021 , 55, 15227-15235	10.3	1
5	Coupling in vitro assays with sequential extraction to investigate cadmium bioaccessibility in contaminated soils. <i>Chemosphere</i> , 2021 , 132655	8.4	0
4	Bioimaging of Pb by LA-ICP-MS and Pb isotopic compositions reveal distributions and origins of Pb in wheat grain. <i>Science of the Total Environment</i> , 2022 , 802, 149729	10.2	0
3	Influence of Dietary Lipid Type on the Bioavailability of DDT and Its Metabolites in Soil: Mechanisms and Health Implications <i>Environmental Science & Environmental Science</i>	10.3	0
2	Nickel oral bioavailability in contaminated soils using a mouse urinary excretion bioassay: Variation with bioaccessibility. <i>Science of the Total Environment</i> , 2022 , 839, 156366	10.2	O

Application of Oral Bioavailability to Remediation of Contaminated Soils: Method Development for Bioaccessible As, Pb, and Cd **2018**, 189-216