
Hongqing Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7898211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A brassinosteroid transcriptional network revealed by genomeâ€wide identification of BESI target genes in <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 65, 634-646.	2.8	565
2	Three related receptor-like kinases are required for optimal cell elongation in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7648-7653.	3.3	315
3	RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nature Communications, 2017, 8, 14573.	5.8	202
4	FERONIA Receptor Kinase Contributes to Plant Immunity by Suppressing Jasmonic Acid Signaling in Arabidopsis thaliana. Current Biology, 2018, 28, 3316-3324.e6.	1.8	154
5	Mechanisms and networks for brassinosteroid regulated gene expression. Current Opinion in Plant Biology, 2013, 16, 545-553.	3.5	147
6	A family of receptor-like kinases are regulated by BES1 and involved in plant growth in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2009, 4, 784-786.	1.2	69
7	Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in Nicotiana benthamiana. Scientific Reports, 2016, 6, 20579.	1.6	67
8	Histone Lysine Methyltransferase SDG8 Is Involved in Brassinosteroid-Regulated Gene Expression in Arabidopsis thaliana. Molecular Plant, 2014, 7, 1303-1315.	3.9	64
9	A BIN2-GLK1 Signaling Module Integrates Brassinosteroid and Light Signaling to Repress Chloroplast Development in the Dark. Developmental Cell, 2021, 56, 310-324.e7.	3.1	61
10	Integrated omics networks reveal the temporal signaling events of brassinosteroid response in Arabidopsis. Nature Communications, 2021, 12, 5858.	5.8	54
11	The F-box E3 ubiquitin ligase BAF1 mediates the degradation of the brassinosteroid-activated transcription factor BES1 through selective autophagy in Arabidopsis. Plant Cell, 2021, 33, 3532-3554.	3.1	27
12	Transcription factors involved in brassinosteroid repressed gene expression and their regulation by BIN2 kinase. Plant Signaling and Behavior, 2014, 9, e27849.	1.2	20
13	Integrated omics reveal novel functions and underlying mechanisms of the receptor kinase FERONIA in <i>Arabidopsis thaliana</i> . Plant Cell, 2022, 34, 2594-2614.	3.1	18
14	<scp>FERONIA</scp> mutation induces high levels of chloroplastâ€localized Arabidopsides which are involved in root growth. Plant Journal, 2019, 97, 341-351.	2.8	13
15	Identification of Brassinosteroid Target Genes by Chromatin Immunoprecipitation Followed by High-Throughput Sequencing (ChIP-seq) and RNA-Sequencing. Methods in Molecular Biology, 2017, 1564, 63-79.	0.4	10
16	Measuring Protein Half-life in Arabidopsis thaliana. Bio-protocol, 2019, 9, e3318.	0.2	1