Joseph El Khoury

List of Publications by Citations

Source: https://exaly.com/author-pdf/7898122/joseph-el-khoury-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 11,359 34 67 g-index

67 13,943 11.1 6.22 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
62	Neuroinflammation in Alzheimerß disease. <i>Lancet Neurology, The</i> , 2015 , 14, 388-405	24.1	2760
61	CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. <i>Nature Immunology</i> , 2010 , 11, 155-61	19.1	1017
60	The microglial sensome revealed by direct RNA sequencing. <i>Nature Neuroscience</i> , 2013 , 16, 1896-905	25.5	907
59	Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimerß disease mice. <i>Journal of Neuroscience</i> , 2008 , 28, 8354-60	6.6	861
58	Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. <i>Nature</i> , 1996 , 382, 716-9	50.4	684
57	Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. <i>Nature Medicine</i> , 2007 , 13, 432-8	50.5	674
56	Microglia in neurodegeneration. <i>Nature Neuroscience</i> , 2018 , 21, 1359-1369	25.5	506
55	Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. <i>Neuron</i> , 2017 , 95, 1246-1265	13.9	300
54	A CD36-initiated signaling cascade mediates inflammatory effects of beta-amyloid. <i>Journal of Biological Chemistry</i> , 2002 , 277, 47373-9	5.4	270
53	Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. <i>Journal of Experimental Medicine</i> , 2000 , 191, 147-56	16.6	229
52	Mac-1 (CD11b/CD18) is an oligodeoxynucleotide-binding protein. <i>Nature Medicine</i> , 1997 , 3, 414-20	50.5	222
51	Methods for using Galleria mellonella as a model host to study fungal pathogenesis. <i>Virulence</i> , 2010 , 1, 475-82	4.7	217
50	Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. <i>Neuro-Oncology</i> , 2016 , 18, 58-69	1	192
49	Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. <i>Journal of Experimental Medicine</i> , 2009 , 206, 637-53	16.6	176
48	A Consensus Definitive Classification of Scavenger Receptors and Their Roles in Health and Disease. <i>Journal of Immunology</i> , 2017 , 198, 3775-3789	5-3	165
47	Microglia in Health and Disease. Cold Spring Harbor Perspectives in Biology, 2015, 8, a020560	10.2	160
46	Mechanisms of microglia accumulation in Alzheimer® disease: therapeutic implications. <i>Trends in Pharmacological Sciences</i> , 2008 , 29, 626-32	13.2	141

45	TREM2 and the neuroimmunology of Alzheimerß disease. <i>Biochemical Pharmacology</i> , 2014 , 88, 495-8	6	139
44	The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity. <i>Nature Immunology</i> , 2013 , 14, 917-26	19.1	139
43	Standardizing scavenger receptor nomenclature. <i>Journal of Immunology</i> , 2014 , 192, 1997-2006	5.3	125
42	Scara1 deficiency impairs clearance of soluble amyloid-Iby mononuclear phagocytes and accelerates Alzheimer like disease progression. <i>Nature Communications</i> , 2013 , 4, 2030	17.4	122
41	Eamyloid, microglia, and the inflammasome in Alzheimerß disease. <i>Seminars in Immunopathology</i> , 2015 , 37, 607-11	12	114
40	TREM2 Acts Downstream of CD33 in Modulating Microglial Pathology in Alzheimerß Disease. <i>Neuron</i> , 2019 , 103, 820-835.e7	13.9	109
39	Microglial scavenger receptors and their roles in the pathogenesis of Alzheimer® disease. <i>International Journal of Alzheimerts Disease</i> , 2012 , 2012, 489456	3.7	98
38	Glioblastoma-Associated Microglia Reprogramming Is Mediated by Functional Transfer of Extracellular miR-21. <i>Cell Reports</i> , 2019 , 28, 3105-3119.e7	10.6	89
37	Megf10 Is a Receptor for C1Q That Mediates Clearance of Apoptotic Cells by Astrocytes. <i>Journal of Neuroscience</i> , 2016 , 36, 5185-92	6.6	83
36	Mechanisms of mononuclear phagocyte recruitment in Alzheimerß disease. <i>CNS and Neurological Disorders - Drug Targets</i> , 2010 , 9, 168-73	2.6	78
35	A high content drug screen identifies ursolic acid as an inhibitor of amyloid beta protein interactions with its receptor CD36. <i>Journal of Biological Chemistry</i> , 2011 , 286, 34914-22	5.4	71
34	Cryptococcus neoformans Kin1 protein kinase homologue, identified through a Caenorhabditis elegans screen, promotes virulence in mammals. <i>Molecular Microbiology</i> , 2004 , 54, 407-19	4.1	69
33	Complementary roles for scavenger receptor A and CD36 of human monocyte-derived macrophages in adhesion to surfaces coated with oxidized low-density lipoproteins and in secretion of H2O2. <i>Journal of Experimental Medicine</i> , 1998 , 188, 2257-65	16.6	69
32	Borrelia burgdorferi stimulates macrophages to secrete higher levels of cytokines and chemokines than Borrelia afzelii or Borrelia garinii. <i>Journal of Infectious Diseases</i> , 2009 , 200, 1936-43	7	66
31	Roles of Microglial and Monocyte Chemokines and Their Receptors in Regulating Alzheimer Roles Disease-Associated Amyloid-Land Tau Pathologies. <i>Frontiers in Neurology</i> , 2018 , 9, 549	4.1	46
30	The receptor TREML4 amplifies TLR7-mediated signaling during antiviral responses and autoimmunity. <i>Nature Immunology</i> , 2015 , 16, 495-504	19.1	45
29	Time-Dependent Changes in Microglia Transcriptional Networks Following Traumatic Brain Injury. <i>Frontiers in Cellular Neuroscience</i> , 2019 , 13, 307	6.1	37
28	Microglia activation mediates fibrillar amyloid-Loxicity in the aged primate cortex. <i>Neurobiology of Aging</i> , 2011 , 32, 387-97	5.6	31

27	The role of TLR4 896 A>G and 1196 C>T in susceptibility to infections: a review and meta-analysis of genetic association studies. <i>PLoS ONE</i> , 2013 , 8, e81047	3.7	31
26	Non-invasively triggered spreading depolarizations induce a rapid pro-inflammatory response in cerebral cortex. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2020 , 40, 1117-1131	7.3	30
25	Glioblastoma hijacks microglial gene expression to support tumor growth. <i>Journal of Neuroinflammation</i> , 2020 , 17, 120	10.1	30
24	Heterozygous CX3CR1 Deficiency in Microglia Restores Neuronal Amyloid Clearance Pathways and Slows Progression of Alzheimer Like-Disease in PS1-APP Mice. Frontiers in Immunology, 2019, 10, 2780	8.4	27
23	Neurodegeneration and the neuroimmune system. <i>Nature Medicine</i> , 2010 , 16, 1369-70	50.5	26
22	Microglial dysfunction as a key pathological change in adrenomyeloneuropathy. <i>Annals of Neurology</i> , 2017 , 82, 813-827	9.4	25
21	COVID-19 in solid organ transplant recipients: Dynamics of disease progression and inflammatory markers in ICU and non-ICU admitted patients. <i>Transplant Infectious Disease</i> , 2020 , 22, e13407	2.7	25
20	The neuroimmune system in Alzheimerß disease: the glass is half full. <i>Journal of Alzheimerts Disease</i> , 2013 , 33 Suppl 1, S295-302	4.3	22
19	Characteristics and Outcomes of Latinx Patients With COVID-19 in Comparison With Other Ethnic and Racial Groups. <i>Open Forum Infectious Diseases</i> , 2020 , 7, ofaa401	1	17
18	A fluorescence technique to distinguish attached from ingested erythrocytes and zymosan particles in phagocytosing macrophages. <i>Journal of Immunological Methods</i> , 1991 , 139, 115-22	2.5	16
17	Interleukin-1 Receptor 1 Deletion in Focal and Diffuse Experimental Traumatic Brain Injury in Mice. <i>Journal of Neurotrauma</i> , 2019 , 36, 370-379	5.4	15
16	Repetitive head injury in adolescent mice: A role for vascular inflammation. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2019 , 39, 2196-2209	7.3	14
15	Scavenger receptors. Current Biology, 2020, 30, R790-R795	6.3	12
14	Analysis of the Microglial Sensome. <i>Methods in Molecular Biology</i> , 2019 , 2034, 305-323	1.4	10
13	Postmenopausal tubo-ovarian abscess due to Pseudomonas aeruginosa in a renal transplant patient: a case report and review of the literature. <i>Transplantation</i> , 2001 , 72, 1241-4	1.8	9
12	Postmortem Adult Human Microglia Proliferate in Culture to High Passage and Maintain Their Response to Amyloid-[] <i>Journal of Alzheimerts Disease</i> , 2016 , 54, 1157-1167	4.3	7
11	Four-dimensional microglia response to anti-Allreatment in APP/PS1xCX3CR1/GFP mice. <i>Intravital</i> , 2013 , 2,		6
10	GlioM&M: Web-based tool for studying circulating and infiltrating monocytes and macrophages in glioma. <i>Scientific Reports</i> , 2020 , 10, 9898	4.9	5

LIST OF PUBLICATIONS

9	Linking indirect effects of cytomegalovirus in transplantation to modulation of monocyte innate immune function. <i>Science Advances</i> , 2020 , 6, eaax9856	14.3	4
8	Comparative Analysis Identifies Similarities between the Human and Murine Microglial Sensomes. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	4
7	The blood-brain barrier and pathogens: Hadrianß Wall or a Dardanian gate?. Virulence, 2012, 3, 157-8	4.7	3
6	Comorbidities and Age Are Associated With Persistent COVID-19 PCR Positivity. <i>Frontiers in Cellular and Infection Microbiology</i> , 2021 , 11, 650753	5.9	3
5	Repetitive Traumatic Brain Injury Causes Neuroinflammation before Tau Pathology in Adolescent P301S Mice. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	3
4	SCARF1-Induced Efferocytosis Plays an Immunomodulatory Role in Humans, and Autoantibodies Targeting SCARF1 Are Produced in Patients with Systemic Lupus Erythematosus <i>Journal of Immunology</i> , 2022 ,	5.3	1
3	Genetic inhibition of RIPK3 ameliorates functional outcome in controlled cortical impact independent of necroptosis. <i>Cell Death and Disease</i> , 2021 , 12, 1064	9.8	1
2	CRISPR-Cas knockout of miR21 reduces glioma growth <i>Molecular Therapy - Oncolytics</i> , 2022 , 25, 121-13	3 6 .4	0

S4-02-04: MOLECULAR SIGNTAURES OF MICROGLIA IN AGING AND NEURODEGENERATION **2014**, 10, P240-P241