
Joseph El Khoury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7898122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuroinflammation in Alzheimer's disease. Lancet Neurology, The, 2015, 14, 388-405.	4.9	4,129
2	CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nature Immunology, 2010, 11, 155-161.	7.0	1,255
3	The microglial sensome revealed by direct RNA sequencing. Nature Neuroscience, 2013, 16, 1896-1905.	7.1	1,244
4	Microglial Dysfunction and Defective β-Amyloid Clearance Pathways in Aging Alzheimer's Disease Mice. Journal of Neuroscience, 2008, 28, 8354-8360.	1.7	1,112
5	Microglia in neurodegeneration. Nature Neuroscience, 2018, 21, 1359-1369.	7.1	1,034
6	Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nature Medicine, 2007, 13, 432-438.	15.2	784
7	Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature, 1996, 382, 716-719.	13.7	742
8	Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. Neuron, 2017, 95, 1246-1265.	3.8	518
9	A CD36-initiated Signaling Cascade Mediates Inflammatory Effects of Î ² -Amyloid. Journal of Biological Chemistry, 2002, 277, 47373-47379.	1.6	302
10	Methods for using <i>Galleria mellonella</i> as a model host to study fungal pathogenesis. Virulence, 2010, 1, 475-482.	1.8	290
11	A Consensus Definitive Classification of Scavenger Receptors and Their Roles in Health and Disease. Journal of Immunology, 2017, 198, 3775-3789.	0.4	261
12	Protection from Lethal Gram-Positive Infection by Macrophage Scavenger Receptor–Dependent Phagocytosis. Journal of Experimental Medicine, 2000, 191, 147-156.	4.2	251
13	Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro-Oncology, 2016, 18, 58-69.	0.6	245
14	Mac-1 (CD11b/CD18) is an oligodeoxynucleotide-binding protein. Nature Medicine, 1997, 3, 414-420.	15.2	241
15	Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. Journal of Experimental Medicine, 2009, 206, 637-653.	4.2	228
16	TREM2 Acts Downstream of CD33 in Modulating Microglial Pathology in Alzheimer's Disease. Neuron, 2019, 103, 820-835.e7.	3.8	222
17	Microglia in Health and Disease. Cold Spring Harbor Perspectives in Biology, 2016, 8, a020560.	2.3	211
18	The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity. Nature Immunology, 2013, 14, 917-926.	7.0	188

JOSEPH EL KHOURY

#	Article	IF	CITATIONS
19	TREM2 and the neuroimmunology of Alzheimer's disease. Biochemical Pharmacology, 2014, 88, 495-498.	2.0	168
20	Standardizing Scavenger Receptor Nomenclature. Journal of Immunology, 2014, 192, 1997-2006.	0.4	166
21	β-amyloid, microglia, and the inflammasome in Alzheimer's disease. Seminars in Immunopathology, 2015, 37, 607-611.	2.8	162
22	Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer's-like disease progression. Nature Communications, 2013, 4, 2030.	5.8	162
23	Mechanisms of microglia accumulation in Alzheimer's disease: therapeutic implications. Trends in Pharmacological Sciences, 2008, 29, 626-632.	4.0	152
24	Microglial Scavenger Receptors and Their Roles in the Pathogenesis of Alzheimer's Disease. International Journal of Alzheimer's Disease, 2012, 2012, 1-10.	1.1	147
25	Glioblastoma-Associated Microglia Reprogramming Is Mediated by Functional Transfer of Extracellular miR-21. Cell Reports, 2019, 28, 3105-3119.e7.	2.9	142
26	Megf10 Is a Receptor for C1Q That Mediates Clearance of Apoptotic Cells by Astrocytes. Journal of Neuroscience, 2016, 36, 5185-5192.	1.7	121
27	Mechanisms of Mononuclear Phagocyte Recruitment in Alzheimers Disease. CNS and Neurological Disorders - Drug Targets, 2010, 9, 168-173.	0.8	91
28	A High Content Drug Screen Identifies Ursolic Acid as an Inhibitor of Amyloid β Protein Interactions with Its Receptor CD36. Journal of Biological Chemistry, 2011, 286, 34914-34922.	1.6	90
29	Roles of Microglial and Monocyte Chemokines and Their Receptors in Regulating Alzheimer's Disease-Associated Amyloid-β and Tau Pathologies. Frontiers in Neurology, 2018, 9, 549.	1.1	86
30	Cryptococcus neoformans Kin1 protein kinase homologue, identified through a Caenorhabditis elegans screen, promotes virulence in mammals. Molecular Microbiology, 2004, 54, 407-419.	1.2	81
31	Complementary Roles for Scavenger Receptor A and CD36 of Human Monocyte–derived Macrophages in Adhesion to Surfaces Coated with Oxidized Low-Density Lipoproteins and in Secretion of H2O2. Journal of Experimental Medicine, 1998, 188, 2257-2265.	4.2	73
32	<i>Borrelia burgdorferi</i> Stimulates Macrophages to Secrete Higher Levels of Cytokines and Chemokines than <i>Borrelia afzelii</i> or <i>Borrelia garinii</i> . Journal of Infectious Diseases, 2009, 200, 1936-1943.	1.9	73
33	Glioblastoma hijacks microglial gene expression to support tumor growth. Journal of Neuroinflammation, 2020, 17, 120.	3.1	71
34	The receptor TREML4 amplifies TLR7-mediated signaling during antiviral responses and autoimmunity. Nature Immunology, 2015, 16, 495-504.	7.0	67
35	Time-Dependent Changes in Microglia Transcriptional Networks Following Traumatic Brain Injury. Frontiers in Cellular Neuroscience, 2019, 13, 307.	1.8	59
36	Scavenger receptors. Current Biology, 2020, 30, R790-R795.	1.8	58

JOSEPH EL KHOURY

#	Article	IF	CITATIONS
37	Heterozygous CX3CR1 Deficiency in Microglia Restores Neuronal β-Amyloid Clearance Pathways and Slows Progression of Alzheimer's Like-Disease in PS1-APP Mice. Frontiers in Immunology, 2019, 10, 2780.	2.2	53
38	Non-invasively triggered spreading depolarizations induce a rapid pro-inflammatory response in cerebral cortex. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1117-1131.	2.4	53
39	The Role of TLR4 896 A>G and 1196 C>T in Susceptibility to Infections: A Review and Meta-Analysis of Genetic Association Studies. PLoS ONE, 2013, 8, e81047.	1.1	46
40	COVIDâ€19 in solid organ transplant recipients: Dynamics of disease progression and inflammatory markers in ICU and nonâ€ICU admitted patients. Transplant Infectious Disease, 2020, 22, e13407.	0.7	45
41	Microglia activation mediates fibrillar amyloid-β toxicity in the aged primate cortex. Neurobiology of Aging, 2011, 32, 387-397.	1.5	37
42	Microglial dysfunction as a key pathological change in adrenomyeloneuropathy. Annals of Neurology, 2017, 82, 813-827.	2.8	37
43	Neurodegeneration and the neuroimmune system. Nature Medicine, 2010, 16, 1369-1370.	15.2	35
44	Characteristics and Outcomes of Latinx Patients With COVID-19 in Comparison With Other Ethnic and Racial Groups. Open Forum Infectious Diseases, 2020, 7, ofaa401.	0.4	26
45	Interleukin-1 Receptor 1 Deletion in Focal and Diffuse Experimental Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2019, 36, 370-379.	1.7	24
46	The NeuroImmune System in Alzheimer's Disease: The Glass is Half Full. Journal of Alzheimer's Disease, 2012, 33, S295-S302.	1.2	23
47	Comparative Analysis Identifies Similarities between the Human and Murine Microglial Sensomes. International Journal of Molecular Sciences, 2021, 22, 1495.	1.8	22
48	Analysis of the Microglial Sensome. Methods in Molecular Biology, 2019, 2034, 305-323.	0.4	21
49	Linking indirect effects of cytomegalovirus in transplantation to modulation of monocyte innate immune function. Science Advances, 2020, 6, eaax9856.	4.7	20
50	Repetitive head injury in adolescent mice: A role for vascular inflammation. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2196-2209.	2.4	19
51	A fluorescence technique to distinguish attached from ingested erythrocytes and zymosan particles in phagocytosing macrophages. Journal of Immunological Methods, 1991, 139, 115-122.	0.6	17
52	CRISPR-Cas knockout of miR21 reduces glioma growth. Molecular Therapy - Oncolytics, 2022, 25, 121-136.	2.0	14
53	Genetic inhibition of RIPK3 ameliorates functional outcome in controlled cortical impact independent of necroptosis. Cell Death and Disease, 2021, 12, 1064.	2.7	13
54	Postmortem Adult Human Microglia Proliferate in Culture to High Passage and Maintain Their Response to Amyloid-β. Journal of Alzheimer's Disease, 2016, 54, 1157-1167.	1.2	12

JOSEPH EL KHOURY

#	Article	IF	CITATIONS
55	POSTMENOPAUSAL TUBO-OVARIAN ABSCESS DUE TO Pseudomonas aeruginosa IN A RENAL TRANSPLANT PATIENT. Transplantation, 2001, 72, 1241-1244.	0.5	11
56	ClioM&M: Web-based tool for studying circulating and infiltrating monocytes and macrophages in glioma. Scientific Reports, 2020, 10, 9898.	1.6	10
57	Repetitive Traumatic Brain Injury Causes Neuroinflammation before Tau Pathology in Adolescent P301S Mice. International Journal of Molecular Sciences, 2021, 22, 907.	1.8	10
58	Comorbidities and Age Are Associated With Persistent COVID-19 PCR Positivity. Frontiers in Cellular and Infection Microbiology, 2021, 11, 650753.	1.8	9
59	Repetitive Mild Closed Head Injury in Adolescent Mice Is Associated with Impaired Proteostasis, Neuroinflammation, and Tauopathy. Journal of Neuroscience, 2022, 42, 2418-2432.	1.7	9
60	Four-dimensional microglia response to anti-Aβ treatment in APP/PS1xCX3CR1/GFP mice. Intravital, 2013, 2, e25693.	2.0	7
61	SCARF1-Induced Efferocytosis Plays an Immunomodulatory Role in Humans, and Autoantibodies Targeting SCARF1 Are Produced in Patients with Systemic Lupus Erythematosus. Journal of Immunology, 2022, 208, 955-967.	0.4	5
62	The blood-brain barrier and pathogens. Virulence, 2012, 3, 157-158.	1.8	4
63	S4-02-04: MOLECULAR SIGNTAURES OF MICROGLIA IN AGING AND NEURODEGENERATION. , 2014, 10, P240-P241.		Ο