Matthias Wuttig

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7898089/matthias-wuttig-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25,968 416 147 79 h-index g-index citations papers 28,870 7.38 445 7.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
416	The glass transition of water, insight from phase change materials. <i>Journal of Non-Crystalline Solids: X</i> , 2022 , 14, 100084	2.5	2
415	Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency <i>Nature Communications</i> , 2022 , 13, 1696	17.4	21
414	Two-Dimensional Platinum Diselenide Waveguide-Integrated Infrared Photodetectors <i>ACS Photonics</i> , 2022 , 9, 859-867	6.3	4
413	Scaling and Confinement in Ultrathin Chalcogenide Films as Exemplified by GeTe Small, 2022, e22017	5 3 1	1
412	Thermally Controlled Charge-Carrier Transitions in Disordered PbSbTe Chalcogenides. <i>Advanced Materials</i> , 2021 , e2106868	24	2
411	Far-Infrared Near-Field Optical Imaging and Kelvin Probe Force Microscopy of Laser-Crystallized and -Amorphized Phase Change Material GeSbTe. <i>Nano Letters</i> , 2021 , 21, 9012-9020	11.5	1
410	Nb-Mediated Grain Growth and Grain-Boundary Engineering in Mg3Sb2-Based Thermoelectric Materials. <i>Advanced Functional Materials</i> , 2021 , 31, 2100258	15.6	15
409	Combining Switchable Phase-Change Materials and Phase-Transition Materials for Thermally Regulated Smart Mid-Infrared Modulators. <i>Advanced Optical Materials</i> , 2021 , 9, 2100417	8.1	6
408	Acceleration of Crystallization Kinetics in Ge-Sb-Te-Based Phase-Change Materials by Substitution of Ge by Sn. <i>Advanced Functional Materials</i> , 2021 , 31, 2004803	15.6	3
407	Enhancing thermoelectric performance of Sb2Te3 through swapped bilayer defects. <i>Nano Energy</i> , 2021 , 79, 105484	17.1	10
406	Metavalent Bonding in Solids: Characteristic Representatives, Their Properties, and Design Options. <i>Physica Status Solidi - Rapid Research Letters</i> , 2021 , 15, 2000482	2.5	12
405	Approaching the Glass Transition Temperature of GeTe by Crystallizing Ge15Te85. <i>Physica Status Solidi - Rapid Research Letters</i> , 2021 , 15, 2000478	2.5	6
404	InSbTe as a programmable nanophotonics material platform for the infrared. <i>Nature Communications</i> , 2021 , 12, 924	17.4	19
403	Effects of Different Amounts of Nb Doping on Electrical, Optical and Structural Properties in Sputtered TiO2N Films. <i>Crystals</i> , 2021 , 11, 301	2.3	3
402	Boron Strengthened GeTe-Based Alloys for Robust Thermoelectric Devices with High Output Power Density. <i>Advanced Energy Materials</i> , 2021 , 11, 2102012	21.8	12
401	Metavalent Bonding in Crystalline Solids: How Does It Collapse?. Advanced Materials, 2021, 33, e21023.	564	23
400	Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. <i>Nature Materials</i> , 2021 , 20, 1378-1384	27	79

(2020-2021)

399	The potential of chemical bonding to design crystallization and vitrification kinetics. <i>Nature Communications</i> , 2021 , 12, 4978	17.4	16
398	Superconducting Phase Induced by a Local Structure Transition in Amorphous Sb_{2}Se_{3} under High Pressure. <i>Physical Review Letters</i> , 2021 , 127, 127002	7.4	3
397	Disorder-induced Anderson-like localization for bidimensional thermoelectrics optimization. <i>Matter</i> , 2021 , 4, 2970-2984	12.7	3
396	Boron-Mediated Grain Boundary Engineering Enables Simultaneous Improvement of Thermoelectric and Mechanical Properties in N-Type Bi Te. <i>Small</i> , 2021 , 17, e2104067	11	7
395	Thermodynamics and kinetics of glassy and liquid phase-change materials. <i>Materials Science in Semiconductor Processing</i> , 2021 , 135, 106094	4.3	5
394	Glass transition of the phase change material AIST and its impact on crystallization. <i>Materials Science in Semiconductor Processing</i> , 2021 , 134, 105990	4.3	6
393	Materials Screening for Disorder-Controlled Chalcogenide Crystals for Phase-Change Memory Applications. <i>Advanced Materials</i> , 2021 , 33, e2006221	24	13
392	Discovering Electron-Transfer-Driven Changes in Chemical Bonding in Lead Chalcogenides (PbX, where X = Te, Se, S, O). <i>Advanced Materials</i> , 2020 , 32, e2005533	24	29
391	Huygens OM et a surfaces: All-Dielectric Programmable Huygens OM et a surfaces (Adv. Funct. Mater. 19/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070122	15.6	2
390	Violation of the Stokes E instein relation in Ge2Sb2Te5, GeTe, Ag4In3Sb67Te26, and Ge15Sb85, and its connection to fast crystallization. <i>Acta Materialia</i> , 2020 , 195, 491-500	8.4	12
389	Changes of Structure and Bonding with Thickness in Chalcogenide Thin Films. <i>Advanced Materials</i> , 2020 , 32, e2001033	24	7
388	Chalcogenides by Design: Functionality through Metavalent Bonding and Confinement. <i>Advanced Materials</i> , 2020 , 32, e1908302	24	91
387	The interplay between Peierls distortions and metavalent bonding in IVI/I compounds: comparing GeTe with related monochalcogenides. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 234002	3	22
386	All-Dielectric Programmable Huygens OMetasurfaces. Advanced Functional Materials, 2020, 30, 1910259	15.6	80
385	Employing Interfaces with Metavalently Bonded Materials for Phonon Scattering and Control of the Thermal Conductivity in TAGS-x Thermoelectric Materials. <i>Advanced Functional Materials</i> , 2020 , 30, 1910039	15.6	19
384	In situ study of vacancy disordering in crystalline phase-change materials under electron beam irradiation. <i>Acta Materialia</i> , 2020 , 187, 103-111	8.4	15
383	Uncovering ₩elaxations in amorphous phase-change materials. Science Advances, 2020, 6, eaay6726	14.3	13
382	Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography. <i>Materials Today</i> , 2020 , 32, 260-274	21.8	31

381	Disordering process of GeSb2Te4 induced by ion irradiation. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 134001	3	1
380	Control of effective cooling rate upon magnetron sputter deposition of glassy Ge15Te85. <i>Scripta Materialia</i> , 2020 , 178, 223-226	5.6	11
379	Investigating Bond Rupture in Resonantly Bonded Solids by Field Evaporation of Carbon Nanotubes. <i>Nano Letters</i> , 2020 , 20, 116-121	11.5	12
378	Cu Intercalation and Br Doping to Thermoelectric SnSe2 Lead to Ultrahigh Electron Mobility and Temperature-Independent Power Factor. <i>Advanced Functional Materials</i> , 2020 , 30, 1908405	15.6	27
377	Lead Chalcogenides: Discovering Electron-Transfer-Driven Changes in Chemical Bonding in Lead Chalcogenides (PbX, where X = Te, Se, S, O) (Adv. Mater. 49/2020). <i>Advanced Materials</i> , 2020 , 32, 20703	7 8 4	1
376	Exceptionally High Average Power Factor and Thermoelectric Figure of Merit in n-type PbSe by the Dual Incorporation of Cu and Te. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15172-15186	16.4	26
375	Surface Polariton-Like s-Polarized Waveguide Modes in Switchable Dielectric Thin Films on Polar Crystals. <i>Advanced Optical Materials</i> , 2020 , 8, 1901056	8.1	11
374	Chalcogenide Thermoelectrics Empowered by an Unconventional Bonding Mechanism. <i>Advanced Functional Materials</i> , 2020 , 30, 1904862	15.6	88
373	Phase-change materials: Empowered by an unconventional bonding mechanism. <i>MRS Bulletin</i> , 2019 , 44, 699-704	3.2	14
372	Metallic filamentary conduction in valence change-based resistive switching devices: the case of TaO thin film with $x \sim 1$. Nanoscale, 2019 , 11, 16978-16990	7.7	10
371	Polariton nanophotonics using phase-change materials. <i>Nature Communications</i> , 2019 , 10, 4487	17.4	53
370	Advanced Optical Programming of Individual Meta-Atoms Beyond the Effective Medium Approach. <i>Advanced Materials</i> , 2019 , 31, e1901033	24	32
369	Quantification of Carrier Density Gradients along Axially Doped Silicon Nanowires Using Infrared Nanoscopy. <i>ACS Photonics</i> , 2019 , 6, 1744-1754	6.3	19
368	Femtosecond x-ray diffraction reveals a liquid-liquid phase transition in phase-change materials. <i>Science</i> , 2019 , 364, 1062-1067	33.3	84
367	Mg Deficiency in Grain Boundaries of n-Type Mg3Sb2 Identified by Atom Probe Tomography. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900429	4.6	23
366	Phase Change Materials and Superlattices for Non-Volatile Memories. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1900130	2.5	17
365	Highly Confined and Switchable Mid-Infrared Surface Phonon Polariton Resonances of Planar Circular Cavities with a Phase Change Material. <i>Nano Letters</i> , 2019 , 19, 2549-2554	11.5	31
364	Stoichiometry Determination of Chalcogenide Superlattices by Means of X-Ray Diffraction and its Limits. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1800577	2.5	8

(2018-2019)

363	Direct atomic insight into the role of dopants in phase-change materials. <i>Nature Communications</i> , 2019 , 10, 3525	17.4	42
362	Switching between Crystallization from the Glassy and the Undercooled Liquid Phase in Phase Change Material Ge Sb Te. <i>Advanced Materials</i> , 2019 , 31, e1900784	24	44
361	Layer-Switching Mechanisms in Sb2Te3. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1900320	2.5	12
360	Impact of Bonding on the Stacking Defects in Layered Chalcogenides. <i>Advanced Functional Materials</i> , 2019 , 29, 1902332	15.6	13
359	Understanding the Structure and Properties of Sesqui-Chalcogenides (i.e., V VI or Pn Ch (Pn = Pnictogen, Ch = Chalcogen) Compounds) from a Bonding Perspective. <i>Advanced Materials</i> , 2019 , 31, e19	9 04 316	₅ 57
358	Role of grain boundaries in Ge-Sb-Te based chalcogenide superlattices. <i>Journal of Physics Condensed Matter</i> , 2019 , 31, 204002	1.8	9
357	Exploring ultrafast threshold switching in InSbTe phase change memory devices. <i>Scientific Reports</i> , 2019 , 9, 19251	4.9	13
356	Persistence of spin memory in a crystalline, insulating phase-change material. <i>Npj Quantum Materials</i> , 2019 , 4,	5	8
355	A Quantum-Mechanical Map for Bonding and Properties in Solids. <i>Advanced Materials</i> , 2019 , 31, e18062	2804	134
354	Disorder Control in Crystalline GeSb2Te4 and its Impact on Characteristic Length Scales. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1800578	2.5	7
353	Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. <i>Nature Reviews Materials</i> , 2019 , 4, 150-168	73.3	356
352	Metal-like conductivity in undoped TiO2-x: Understanding an unconventional transparent conducting oxide. <i>Thin Solid Films</i> , 2019 , 669, 1-7	2.2	7
351	Investigation of the phase change mechanism of Ge6Sn2Sb2Te11. <i>Acta Materialia</i> , 2018 , 152, 278-287	8.4	12
350	Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding. <i>Advanced Materials</i> , 2018 , 30, e1706735	24	127
349	Evidence of Enhanced Carrier Collection in Cu(In,Ga)Se Grain Boundaries: Correlation with Microstructure. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 14759-14766	9.5	19
348	2D or Not 2D: Strain Tuning in Weakly Coupled Heterostructures. <i>Advanced Functional Materials</i> , 2018 , 28, 1705901	15.6	39
347	Ag-Segregation to Dislocations in PbTe-Based Thermoelectric Materials. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 3609-3615	9.5	48
346	Unconventional two-dimensional germanium dichalcogenides. <i>Nanoscale</i> , 2018 , 10, 7363-7368	7.7	21

345	Controlled Crystal Growth of Indium Selenide, InSe, and the Crystal Structures of ⊞nSe. <i>Inorganic Chemistry</i> , 2018 , 57, 11775-11781	5.1	49
344	Indium-Tin-Oxide (ITO) Work Function Tailoring by Covalently Bound Carboxylic Acid Self-Assembled Monolayers. <i>Physica Status Solidi (B): Basic Research</i> , 2018 , 255, 1800075	1.3	6
343	Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy. <i>MRS Communications</i> , 2018 , 8, 1418-1425	2.7	12
342	Sb2Te3 Growth Study Reveals That Formation of Nanoscale Charge Carrier Domains Is an Intrinsic Feature Relevant for Electronic Applications. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6834-6842	5.6	7
341	Surface Modifications by Self-Assembled Monolayers to Improve Organic Opto-Electronic Devices 2018 , 835-841		1
340	Vibrational Properties of Ge-Sb-Te Phase-Change Alloys Studied by Temperature-Dependent IR and Raman Spectroscopy. <i>NATO Science for Peace and Security Series B: Physics and Biophysics</i> , 2018 , 377-379) ^{O.2}	
339	Atomic disordering processes in crystalline GeTe induced by ion irradiation. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 495103	3	3
338	Vibrational Properties of Ge-Sb-Te Phase-Change Alloys Studied by IR and Raman Spectroscopy at Different Temperatures. <i>NATO Science for Peace and Security Series B: Physics and Biophysics</i> , 2018 , 441-	447	
337	Tailoring Thermoelectric Transport Properties of Ag-Alloyed PbTe: Effects of Microstructure Evolution. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 38994-39001	9.5	12
336	Incipient Metals: Functional Materials with a Unique Bonding Mechanism. <i>Advanced Materials</i> , 2018 , 30, e1803777	24	154
335	High-Performance n-Type PbSe-CuSe Thermoelectrics through Conduction Band Engineering and Phonon Softening. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15535-15545	16.4	64
334	Correlation between the transport mechanisms in conductive filaments inside Ta2O5-based resistive switching devices and in substoichiometric TaOx thin films. <i>Applied Physics Letters</i> , 2018 , 112, 213504	3.4	12
333	Thermoelectric Performance of IV-VI Compounds with Octahedral-Like Coordination: A Chemical-Bonding Perspective. <i>Advanced Materials</i> , 2018 , 30, e1801787	24	54
332	Genesis and Effects of Swapping Bilayers in Hexagonal GeSb2Te4. <i>Chemistry of Materials</i> , 2018 , 30, 4770	Dg <u>4</u> 777	29
331	Unerwartete Ge-Ge-Kontakte in der zweidimensionalen Phase Ge4Se3Te und Analyse ihres chemischen Ursprungs mittels Energiedichte(DOE)-Funktion. <i>Angewandte Chemie</i> , 2017 , 129, 10338-103	342	1
330	Unexpected Ge-Ge Contacts in the Two-Dimensional Ge Se Te Phase and Analysis of Their Chemical Cause with the Density of Energy (DOE) Function. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10204-10208	16.4	45
329	Simultaneous optimization of electrical and thermal transport properties of Bi 0.5 Sb 1.5 Te 3 thermoelectric alloy by twin boundary engineering. <i>Nano Energy</i> , 2017 , 37, 203-213	17.1	115
328	Enhanced temperature stability and exceptionally high electrical contrast of selenium substituted Ge2Sb2Te5 phase change materials. <i>RSC Advances</i> , 2017 , 7, 17164-17172	3.7	17

(2016-2017)

327	Role of Nanostructuring and Microstructuring in Silver Antimony Telluride Compounds for Thermoelectric Applications. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 14779-14790	9.5	26
326	Dielectric properties of amorphous phase-change materials. <i>Physical Review B</i> , 2017 , 95,	3.3	35
325	Impact of Pressure on the Resonant Bonding in Chalcogenides. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 25447-25454	3.8	18
324	Investigating the Influence of Resonant Bonding on the Optical Properties of Phase Change Materials (GeTe)xSnSb2Se4. <i>Chemistry of Materials</i> , 2017 , 29, 9320-9327	9.6	13
323	Design Parameters for Phase-Change Materials for Nanostructure Resonance Tuning. <i>Advanced Optical Materials</i> , 2017 , 5, 1700261	8.1	38
322	Chemical Tuning of Carrier Type and Concentration in a Homologous Series of Crystalline Chalcogenides. <i>Chemistry of Materials</i> , 2017 , 29, 6749-6757	9.6	17
321	InnenrEktitelbild: Unerwartete Ge-Ge-Kontakte in der zweidimensionalen Phase Ge4Se3Te und Analyse ihres chemischen Ursprungs mittels Energiedichte(DOE)-Funktion (Angew. Chem. 34/2017). <i>Angewandte Chemie</i> , 2017 , 129, 10381-10381	3.6	
320	Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. <i>Light: Science and Applications</i> , 2017 , 6, e17016	16.7	210
319	Phase-change materials for non-volatile photonic applications. <i>Nature Photonics</i> , 2017 , 11, 465-476	33.9	582
318	Formation of resonant bonding during growth of ultrathin GeTe films. NPG Asia Materials, 2017, 9, e39	06- <u>e</u> 3.96	20
317	A Review on Disorder-Driven Metal-Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials. <i>Materials</i> , 2017 , 10,	3.5	38
316	GeBbIIe Phase-Change Materials 2017 , 735-749		1
315	Strain Development and Damage Accumulation Under Ion Irradiation of Polycrystalline GeBble Alloys. <i>Nanoscience and Nanotechnology Letters</i> , 2017 , 9, 1095-1101	0.8	4
314	Interband characterization and electronic transport control of nanoscaled GeTe/Sb2Te3 superlattices. <i>Physical Review B</i> , 2016 , 94,	3.3	9
313	Ordered Peierls distortion prevented at growth onset of GeTe ultra-thin films. <i>Scientific Reports</i> , 2016 , 6, 32895	4.9	15
312	Revisiting the Local Structure in Ge-Sb-Te based Chalcogenide Superlattices. <i>Scientific Reports</i> , 2016 , 6, 22353	4.9	57
311	Carbon-Based Resistive Memories 2016 ,		3
310	Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material. <i>Applied</i>	3.4	

309	Atomic stacking and van-der-Waals bonding in GeTeBb2Te3 superlattices. <i>Journal of Materials Research</i> , 2016 , 31, 3115-3124	2.5	45
308	Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. <i>Nature Materials</i> , 2016 , 15, 870-5	27	251
307	Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials. <i>Physical Review Letters</i> , 2016 , 117, 067601	7.4	47
306	Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals. <i>Langmuir</i> , 2016 , 32, 8812-7	4	8
305	Understanding the conductive channel evolution in Na:WO(3-x)-based planar devices. <i>Nanoscale</i> , 2015 , 7, 6023-30	7.7	13
304	How Supercooled Liquid Phase-Change Materials Crystallize: Snapshots after Femtosecond Optical Excitation. <i>Chemistry of Materials</i> , 2015 , 27, 5641-5646	9.6	42
303	Vibrational properties and bonding nature of SbSe and their implications for chalcogenide materials. <i>Chemical Science</i> , 2015 , 6, 5255-5262	9.4	62
302	Aging mechanisms in amorphous phase-change materials. <i>Nature Communications</i> , 2015 , 6, 7467	17.4	170
301	Phase-Change and Redox-Based Resistive Switching Memories. <i>Proceedings of the IEEE</i> , 2015 , 103, 1274	I- 148 8	112
300	Plasmonic Absorbers: A Switchable Mid-Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability (Adv. Mater. 31/2015). <i>Advanced Materials</i> , 2015 , 27, 4526-4526	24	3
299	A chemical link between GeBbIIe and InBbIIe phase-change materials. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9519-9523	7.1	34
298	Incident Angle-Tuning of Infrared Antenna Array Resonances for Molecular Sensing. <i>ACS Photonics</i> , 2015 , 2, 1498-1504	6.3	35
297	Orbital mixing in solids as a descriptor for materials mapping. <i>Solid State Communications</i> , 2015 , 203, 31-34	1.6	13
296	Density-functional theory guided advances in phase-change materials and memories. <i>MRS Bulletin</i> , 2015 , 40, 856-869	3.2	52
295	Disorder-Induced Localization in Crystalline Pseudo-Binary GeTeBb2Te3 Alloys between Ge3Sb2Te6 and GeTe. <i>Advanced Functional Materials</i> , 2015 , 25, 6399-6406	15.6	50
294	Low-Temperature Transport in Crystalline Ge1Sb2Te4. Advanced Functional Materials, 2015, 25, 6390-6.	3 9§ .6	37
293	Relation between bandgap and resistance drift in amorphous phase change materials. <i>Scientific Reports</i> , 2015 , 5, 17362	4.9	40
292	Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy. <i>Applied Physics Letters</i> , 2015 , 107, 151902	3.4	15

(2014-2015)

291	Effects of stoichiometry on the transport properties of crystalline phase-change materials. <i>Scientific Reports</i> , 2015 , 5, 13496	4.9	23
290	A Switchable Mid-Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability. <i>Advanced Materials</i> , 2015 , 27, 4597-603	24	354
289	Microscopic Complexity in Phase-Change Materials and its Role for Applications. <i>Advanced Functional Materials</i> , 2015 , 25, 6343-6359	15.6	71
288	Reversing the Resistivity Contrast in the Phase-Change Memory Material GeSb2Te4 Using High Pressure. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500240	6.4	17
287	Active Chiral Plasmonics. <i>Nano Letters</i> , 2015 , 15, 4255-60	11.5	208
286	Disorder Control in Crystalline GeSbTe Using High Pressure. <i>Advanced Science</i> , 2015 , 2, 1500117	13.6	28
285	Impact of vacancy ordering on thermal transport in crystalline phase-change materials. <i>Reports on Progress in Physics</i> , 2015 , 78, 013001	14.4	76
284	How fragility makes phase-change data storage robust: insights from ab initio simulations. <i>Scientific Reports</i> , 2014 , 4, 6529	4.9	56
283	Amorphous and highly nonstoichiometric titania (TiOx) thin films close to metal-like conductivity. Journal of Materials Chemistry A, 2014 , 2, 6631	13	41
282	A New Route to Low Resistance Contacts for Performance-Enhanced Organic Electronic Devices. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1300130	4.6	13
281	Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses. <i>ACS Photonics</i> , 2014 , 1, 833-839	6.3	151
2 80	Spectral Tuning of Localized Surface Phonon Polariton Resonators for Low-Loss Mid-IR Applications. <i>ACS Photonics</i> , 2014 , 1, 718-724	6.3	109
279	Specific Heat of (GeTe)x(Sb2Te3)1☑ Phase-Change Materials: The Impact of Disorder and Anharmonicity. <i>Chemistry of Materials</i> , 2014 , 26, 2307-2312	9.6	33
278	Phase change materials and phase change memory. MRS Bulletin, 2014, 39, 703-710	3.2	295
277	Phase-Change Materials for Data Storage Applications 2014 , 169-193		2
276	Ion beam assisted sputter deposition of ZnO for silicon thin-film solar cells. <i>Journal Physics D: Applied Physics</i> , 2014 , 47, 105202	3	7
275	Impact of Maxwell rigidity transitions on resistance drift phenomena in GexTe1⊠ glasses. <i>Applied Physics Letters</i> , 2014 , 105, 092108	3.4	17
274	Bonding nature of local structural motifs in amorphous GeTe. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 10817-20	16.4	102

273	Ultrafast terahertz-induced response of GeSbTe phase-change materials. <i>Applied Physics Letters</i> , 2014 , 104, 251907	3.4	27
272	Bindungseigenschaften lokaler Strukturmotive in amorphem GeTe. <i>Angewandte Chemie</i> , 2014 , 126, 10	99,3610	997
271	Increasing the carbon deposition rate using sputter yield amplification upon serial magnetron co-sputtering. <i>Surface and Coatings Technology</i> , 2014 , 252, 74-78	4.4	3
270	Advanced properties of Al-doped ZnO films with a seed layer approach for industrial thin film photovoltaic application. <i>Thin Solid Films</i> , 2013 , 534, 474-481	2.2	19
269	Using low-loss phase-change materials for mid-infrared antenna resonance tuning. <i>Nano Letters</i> , 2013 , 13, 3470-5	11.5	207
268	Low-Cost Infrared Resonant Structures for Surface-Enhanced Infrared Absorption Spectroscopy in the Fingerprint Region from 3 to 13 fb. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 11311-11316	3.8	46
267	(GeTe)x[Sb2Te3)1☑ phase-change thin films as potential thermoelectric materials. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2013 , 210, 147-152	1.6	53
266	Stoichiometry dependence of resistance drift phenomena in amorphous GeSnTe phase-change alloys. <i>Journal of Applied Physics</i> , 2013 , 113, 023704	2.5	27
265	High-pressure Raman spectroscopy of phase change materials. <i>Applied Physics Letters</i> , 2013 , 103, 1919	08j.4	18
264	Measurement of crystal growth velocity in a melt-quenched phase-change material. <i>Nature Communications</i> , 2013 , 4, 2371	17.4	144
263	Defects in amorphous phase-change materials. <i>Journal of Materials Research</i> , 2013 , 28, 1139-1147	2.5	34
262	Nanosession: Valence Change Memories - Redox Mechanism and Modelling 2013 , 219-231		
261	Poster: Spin-Related Phenomena 2013 , 589-632		
260	Nanosession: Phase Change Memories 2013 , 163-176		
259	Design of Novel Dielectric Surface Modifications for Perylene Thin-Film Transistors. <i>Advanced Functional Materials</i> , 2012 , 22, 415-420	15.6	34
258	Simultaneous calorimetric and quick-EXAFS measurements to study the crystallization process in phase-change materials. <i>Journal of Synchrotron Radiation</i> , 2012 , 19, 806-13	2.4	8
257	Phase change materials: Chalcogenides with remarkable properties due to an unconventional bonding mechanism. <i>Physica Status Solidi (B): Basic Research</i> , 2012 , 249, 1843-1850	1.3	23
256	The Science and Technology of Phase Change Materials. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2012 , 638, 2455-2465	1.3	63

255	Structure control of sputtered zinc oxide films by utilizing zinc oxide seed layers tailored by ion beam assisted sputtering. <i>Journal Physics D: Applied Physics</i> , 2012 , 45, 245302	3	8
254	Influence of Partial Substitution of Te by Se and Ge by Sn on the Properties of the Blu-ray Phase-Change Material Ge8Sb2Te11. <i>Chemistry of Materials</i> , 2012 , 24, 3582-3590	9.6	32
253	Modelling of sputtering yield amplification in serial reactive magnetron co-sputtering. <i>Surface and Coatings Technology</i> , 2012 , 206, 5055-5059	4.4	9
252	Phase transitions in GaBb phase change alloys. <i>Physica Status Solidi (B): Basic Research</i> , 2012 , 249, 1999-	2 <u>0</u> .94	36
251	Impact of DoS changes on resistance drift and threshold switching in amorphous phase change materials. <i>Journal of Non-Crystalline Solids</i> , 2012 , 358, 2412-2415	3.9	30
250	Role of vacancies in metal-insulator transitions of crystalline phase-change materials. <i>Nature Materials</i> , 2012 , 11, 952-6	27	220
249	Nanosecond threshold switching of GeTe6 cells and their potential as selector devices. <i>Applied Physics Letters</i> , 2012 , 100, 143505	3.4	95
248	Phase Change Materials: Challenges on the Path to a Universal Storage Device. <i>Annual Review of Condensed Matter Physics</i> , 2012 , 3, 215-237	19.7	68
247	Casimir Force Contrast Between Amorphous and Crystalline Phases of AIST. <i>Advanced Functional Materials</i> , 2012 , 22, 3729-3736	15.6	32
246	Weak antilocalization and disorder-enhanced electron interactions in annealed films of the phase-change compound GeSb2Te4. <i>Physical Review B</i> , 2012 , 86,	3.3	53
245	Comment on "New structural picture of the Ge2Sb2Te5 phase-change alloy". <i>Physical Review Letters</i> , 2012 , 108, 239601; author reply 239602	7.4	10
244	Phase change materials. <i>MRS Bulletin</i> , 2012 , 37, 118-123	3.2	71
243	Investigation of intermolecular interactions in perylene films on Au(111) by infrared spectroscopy. Journal of Chemical Physics, 2012 , 136, 054503	3.9	5
242	On the density of states of germanium telluride. <i>Journal of Applied Physics</i> , 2012 , 112, 113714	2.5	30
241	Some results on the germanium telluride density of states. <i>Journal of Physics: Conference Series</i> , 2012 , 398, 012007	0.3	4
240	2011,		1
239	Sputter yield amplification by tungsten doping of Al2O3employing reactive serial co-sputtering: process characteristics and resulting film properties. <i>Journal Physics D: Applied Physics</i> , 2011 , 44, 34550	1 ³	10
238	Applied physics. Phase-change memories on a diet. <i>Science</i> , 2011 , 332, 543-4	33.3	112

237	Disorder-induced localization in crystalline phase-change materials. <i>Nature Materials</i> , 2011 , 10, 202-8	27	435
236	Phase-Change Materials: Vibrational Softening upon Crystallization and Its Impact on Thermal Properties. <i>Advanced Functional Materials</i> , 2011 , 21, 2232-2239	15.6	105
235	Design rules for phase-change materials in data storage applications. <i>Advanced Materials</i> , 2011 , 23, 203	0≥548	381
234	Analysis of Transient Currents During Ultrafast Switching of \$hbox{TiO}_{2}\$ Nanocrossbar Devices. <i>IEEE Electron Device Letters</i> , 2011 , 32, 1116-1118	4.4	40
233	Thin Films of GeBbIIe-Based Phase Change Materials: Microstructure and in Situ Transformation. <i>Chemistry of Materials</i> , 2011 , 23, 3871-3878	9.6	31
232	The influence of a temperature dependent bandgap on the energy scale of modulated photocurrent experiments. <i>Journal of Applied Physics</i> , 2011 , 110, 013719	2.5	27
231	Thermal and elastic properties of Ge-Sb-Te based phase-change materials. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1338, 301		2
230	Stochastic analysis on temperature-dependent roughening of amorphous organic films. <i>Europhysics Letters</i> , 2010 , 90, 10008	1.6	11
229	Switching Casimir forces with phase-change materials. <i>Physical Review A</i> , 2010 , 82,	2.6	86
228	Formation mechanism of noble metal nanoparticles in reactively sputtered TiO2 films. <i>Journal of Applied Physics</i> , 2010 , 108, 063529	2.5	12
227	The role of defects in resistively switching chalcogenides. <i>International Journal of Materials Research</i> , 2010 , 101, 182-198	0.5	12
226	Comparison of the Energy-Level Alignment of Thiolate- and Carbodithiolate-Bound Self-Assembled Monolayers on Gold Journal of Physical Chemistry C, 2010 , 114, 20843-20851	3.8	5
225	Structural improvement of zinc oxide films produced by ion beam assisted reactive sputtering. Journal Physics D: Applied Physics, 2010 , 43, 205301	3	13
224	The role of energetic ion bombardment during growth of TiO2thin films by reactive sputtering. Journal Physics D: Applied Physics, 2010, 43, 405303	3	49
223	Atomic structure of amorphous and crystallized Ge15Sb85. <i>Journal of Applied Physics</i> , 2010 , 107, 10431	2 2.5	25
222	Low temperature sputter deposition of SnOx:Sb films for transparent conducting oxide applications. <i>Surface and Coatings Technology</i> , 2010 , 205, 2455-2460	4.4	33
221	Optische Speichermedien. Phasenwechselmaterialien. <i>Chemie in Unserer Zeit</i> , 2010 , 44, 92-107	0.2	18
220	Characterization of amorphous organic thin films, determination of precise model for spectroscopic ellipsometry measurements. <i>Applied Surface Science</i> , 2010 , 256, 6612-6617	6.7	4

(2009-2010)

219	Function by defects at the atomic scale INew concepts for non-volatile memories. <i>Solid-State Electronics</i> , 2010 , 54, 830-840	1.7	42
218	Modelling of sputtering yield amplification effect in reactive deposition of oxides. <i>Surface and Coatings Technology</i> , 2010 , 204, 3882-3886	4.4	15
217	Investigation of defect states in the amorphous phase of phase change alloys GeTe and Ge2Sb2Te5. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2010 , 7, NA-NA		11
216	Scanning tunneling microscopy and spectroscopy of the phase change alloy Ge1Sb2Te4. <i>Applied Physics Letters</i> , 2009 , 95, 103110	3.4	14
215	The influence of Se doping upon the phase change characteristics of GeSb2Te4. <i>Solid State Sciences</i> , 2009 , 11, 683-687	3.4	11
214	Phase change materials: The importance of resonance bonding. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 1820-1825	1.3	12
213	Schalten mit Licht und Strom. Phasenwechsel-Materialien als universale Speichermedien. <i>Physik in Unserer Zeit</i> , 2009 , 40, 189-195	0.1	1
212	Influence of barrier thickness on AllnN/AlN/GaN heterostructures and device properties. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2009 , 6, S1041-S1044		10
211	Plasmonphonon contribution in the permittivity of ZnP2 single crystals in FIR at low temperatures. <i>Vibrational Spectroscopy</i> , 2009 , 50, 209-213	2.1	11
210	Local atomic order and optical properties in amorphous and laser-crystallized GeTe. <i>Comptes Rendus Physique</i> , 2009 , 10, 514-527	1.4	13
209	Highly textured zinc oxide films by room temperature ion beam assisted deposition. <i>Physica Status Solidi - Rapid Research Letters</i> , 2009 , 3, 236-238	2.5	13
208	Characterization of phase change memory materials using phase change bridge devices. <i>Journal of Applied Physics</i> , 2009 , 106, 054308	2.5	22
207	Threshold field of phase change memory materials measured using phase change bridge devices. <i>Applied Physics Letters</i> , 2009 , 95, 082101	3.4	114
206	On the phase formation of titanium oxide films grown by reactive high power pulsed magnetron sputtering. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 115204	3	52
205	Increase of the deposition rate in reactive sputtering of metal oxides using a ceramic nitride target. <i>Journal of Applied Physics</i> , 2009 , 105, 093302	2.5	10
204	Nanosecond switching in GeTe phase change memory cells. <i>Applied Physics Letters</i> , 2009 , 95, 043108	3.4	340
203	On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 015304	3	105
202	Phase-Change Materials For Non-Volatile Data Storage. <i>NATO Science for Peace and Security Series B: Physics and Biophysics</i> , 2009 , 413-428	0.2	

201	Resonant bonding in crystalline phase-change materials. <i>Nature Materials</i> , 2008 , 7, 653-8	27	775
2 00	A map for phase-change materials. <i>Nature Materials</i> , 2008 , 7, 972-7	27	559
199	Structure of the liquid and the crystal of the phase-change material SnSe2: First-principles molecular dynamics. <i>Physical Review B</i> , 2008 , 78,	3.3	16
198	Investigation of SnSe, SnSe2, and Sn2Se3 alloys for phase change memory applications. <i>Journal of Applied Physics</i> , 2008 , 103, 083523	2.5	134
197	SET Characteristics of Phase Change Bridge Devices. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1072, 1		14
196	A semi-quantitative model for the deposition rate in non-reactive high power pulsed magnetron sputtering. <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 215301	3	20
195	Changes in electronic structure and chemical bonding upon crystallization of the phase change material GeSb2Te4. <i>Physical Review Letters</i> , 2008 , 100, 016402	7.4	48
194	Tailoring of structure formation and phase composition in reactively sputtered zirconium oxide films using nitrogen as an additional reactive gas. <i>Journal of Applied Physics</i> , 2008 , 103, 083306	2.5	15
193	Influence of deposition chamber pressure and substrate temperature on the properties of fluorescent blue and phosphorescent red OLED deposited by OVPD. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1003, 1		
192	Structure and morphology of perylene films grown on different substrates. <i>Journal of Applied Physics</i> , 2008 , 104, 013505	2.5	10
191	Recent development on surface-textured ZnO:Al films prepared by sputtering for thin-film solar cell application. <i>Thin Solid Films</i> , 2008 , 516, 5836-5841	2.2	108
190	Reversible switching in phase-change materials. <i>Materials Today</i> , 2008 , 11, 20-27	21.8	141
189	Influence of dielectric surface modification on growth, structure and transport properties of perylene films. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 782-787	1.3	3
188	Characteristic Ordering in Liquid Phase-Change Materials. <i>Advanced Materials</i> , 2008 , 20, 4535-4540	24	41
187	Experimental studies and limitations of the light trapping and optical losses in microcrystalline silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2008 , 92, 1037-1042	6.4	63
186	The effect of the microstructure and the surface topography on the electrical properties of thin Ag films deposited by high power pulsed magnetron sputtering. <i>Surface and Coatings Technology</i> , 2008 , 202, 2323-2327	4.4	19
185	Process stabilization and enhancement of deposition rate during reactive high power pulsed magnetron sputtering of zirconium oxide. <i>Surface and Coatings Technology</i> , 2008 , 202, 5033-5035	4.4	67
184	The effect of the backscattered energetic atoms on the stress generation and the surface morphology of reactively sputtered vanadium nitride films. <i>Thin Solid Films</i> , 2008 , 516, 4568-4573	2.2	6

(2006-2008)

183	Evolution of dislocations in perylene films with thickness and deposition rate. <i>Physica Status Solidi - Rapid Research Letters</i> , 2008 , 2, 1-3	2.5	13
182	From a Fundamental Understanding of Phase Change Materials to Optimization Rules for Nonvolatile Optical and Electronic Storage 2008 , 211-221		
181	Origin of the optical contrast in phase-change materials. <i>Physical Review Letters</i> , 2007 , 98, 236403	7.4	140
180	The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. <i>Journal of Applied Physics</i> , 2007 , 101, 074903	2.5	437
179	Phase Change Data Storage: New Materials 2007 , 1-4		
178	Epitaxial Pt(111) thin film electrodes on YSZ(111) and YSZ(100) IPreparation and characterisation. <i>Solid State Ionics</i> , 2007 , 178, 327-337	3.3	44
177	The effect of target aging on the structure formation of zinc oxide during reactive sputtering. <i>Thin Solid Films</i> , 2007 , 515, 3554-3558	2.2	31
176	The role of vacancies and local distortions in the design of new phase-change materials. <i>Nature Materials</i> , 2007 , 6, 122-8	27	367
175	Phase-change materials for rewriteable data storage. <i>Nature Materials</i> , 2007 , 6, 824-32	27	2537
174	Phase change materials: From material science to novel storage devices. <i>Applied Physics A: Materials Science and Processing</i> , 2007 , 87, 411-417	2.6	120
173	Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. <i>Journal of Materials Research</i> , 2007 , 22, 748-754	2.5	99
172	The role of backscattered energetic atoms in film growth in reactive magnetron sputtering of chromium nitride. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 778-785	3	18
171	Phase change materials: From structures to kinetics. <i>Journal of Materials Research</i> , 2007 , 22, 2368-2375	2.5	12
170	Crystalline phases in the GeSb2Te4 alloy system: Phase transitions and elastic properties. <i>Journal of Applied Physics</i> , 2007 , 102, 093519	2.5	25
169	Process characteristics and film properties upon growth of TiOxfilms by high power pulsed magnetron sputtering. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 2108-2114	3	108
168	Structural, optical and mechanical properties of aluminium nitride films prepared by reactive DC magnetron sputtering. <i>Thin Solid Films</i> , 2006 , 502, 235-239	2.2	42
167	Multi-technique characterization of tantalum oxynitride films prepared by reactive direct current magnetron sputtering. <i>Thin Solid Films</i> , 2006 , 514, 1-9	2.2	29
166	Gasochromic switching of reactively sputtered molybdenumoxide films: A correlation between film properties and deposition pressure. <i>Thin Solid Films</i> , 2006 , 515, 1327-1333	2.2	34

165	Reactive direct current magnetron sputtering of tungsten oxide: A correlation between film properties and deposition pressure. <i>Thin Solid Films</i> , 2006 , 515, 2760-2764	2.2	9
164	Optical Data Storage 2006 ,		30
163	OPTICAL AND ELECTRONIC DATA STORAGE WITH PHASE CHANGE MATERIALS: FROM CRYSTAL STRUCTURES TO KINETICS. <i>NATO Science Series Series II, Mathematics, Physics and Chemistry</i> , 2006 , 449	-454	
162	CHALCOGENIDE ALLOYS AS A BASIS FOR NEW NON-VOLATILE RANDOM ACCESS MEMORIES. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2006 , 455-460		1
161	Phase Change Materials - From Structures to Kinetics. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 918, 3		1
160	Thermal characterization of dielectric and phase change materials for the optical recording applications. <i>Journal of Applied Physics</i> , 2006 , 100, 024102	2.5	9
159	Nucleation of AgInSbTe films employed in phase-change media. <i>Journal of Applied Physics</i> , 2006 , 99, 06	49.0;7	24
158	Inherent features in the growth of perylene crystals on an oil substrate. <i>Physical Review B</i> , 2006 , 73,	3.3	15
157	On the deposition rate in a high power pulsed magnetron sputtering discharge. <i>Applied Physics Letters</i> , 2006 , 89, 154104	3.4	135
156	Optical and structural changes of silver nanoparticles during photochromic transformation. <i>Applied Physics Letters</i> , 2006 , 88, 011923	3.4	38
155	In situ stress measurements in zirconium and zirconium oxide films prepared by direct current sputtering. <i>Journal of Applied Physics</i> , 2006 , 99, 123517	2.5	12
154	Sb-Se-based phase-change memory device with lower power and higher speed operations. <i>IEEE Electron Device Letters</i> , 2006 , 27, 445-447	4.4	84
153	Process stabilization and increase of the deposition rate in reactive sputtering of metal oxides and oxynitrides. <i>Applied Physics Letters</i> , 2006 , 88, 161504	3.4	43
152	Design of ZnO:Al films with optimized surface texture for silicon thin-film solar cells 2006 ,		8
151	Unravelling the interplay of local structure and physical properties in phase-change materials. <i>Nature Materials</i> , 2006 , 5, 56-62	27	283
150	Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2006 , 90, 3054-3060	6.4	113
149	Towards understanding the superior properties of transition metal oxynitrides prepared by reactive DC magnetron sputtering. <i>Thin Solid Films</i> , 2006 , 502, 228-234	2.2	86
148	Material study on reactively sputtered zinc oxide for thin film silicon solar cells. <i>Thin Solid Films</i> , 2006 , 502, 286-291	2.2	92

147	Electrical properties and crystallization behavior of Sb x Se100½ thin films. <i>Microsystem Technologies</i> , 2006 , 13, 153-159	1.7	22	
146	Influence of doping upon the phase change characteristics of Ge2Sb2Te5. <i>Microsystem Technologies</i> , 2006 , 13, 203-206	1.7	41	
145	Stress evolution during growth in direct-current-sputtered zinc oxide films at various oxygen flows. <i>Journal of Applied Physics</i> , 2005 , 98, 073514	2.5	17	
144	Photochromic silver nanoparticles fabricated by sputter deposition. <i>Journal of Applied Physics</i> , 2005 , 97, 094305	2.5	98	
143	Influence of deposition parameters on the properties of sputtered Ge2Sb2Te5 films. <i>Thin Solid Films</i> , 2005 , 478, 248-251	2.2	25	
142	Reactive sputter deposition of zinc oxide: Employing resputtering effects to tailor film properties. <i>Thin Solid Films</i> , 2005 , 484, 64-67	2.2	33	
141	Effect of indium doping on Ge2Sb2Te5 thin films for phase-change optical storage. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 80, 1611-1616	2.6	68	
140	Assessment of Se based phase change alloy as a candidate for non-volatile electronic memory applications. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 81, 1601-1605	2.6	18	
139	Structural transformation of SbxSe100⊠ thin films for phase change nonvolatile memory applications. <i>Journal of Applied Physics</i> , 2005 , 98, 014904	2.5	48	
138	Crystal morphology and nucleation in thin films of amorphous Te alloys used for phase change recording. <i>Journal of Applied Physics</i> , 2005 , 98, 054902	2.5	67	
137	Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording. <i>Journal of Applied Physics</i> , 2005 , 98, 054910	2.5	71	
136	Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. <i>Applied Physics Letters</i> , 2004 , 84, 5240-5242	3.4	157	
135	Influence of Bi doping upon the phase change characteristics of Ge2Sb2Te5. <i>Journal of Applied Physics</i> , 2004 , 96, 5557-5562	2.5	80	
134	Structure formation upon reactive direct current magnetron sputteringof transition metal oxide films. <i>Applied Physics Letters</i> , 2004 , 85, 748-750	3.4	61	
133	Influence of dielectric capping layers on the crystallization kinetics of Ag5In6Sb59Te30 films. <i>Journal of Applied Physics</i> , 2004 , 96, 2624-2627	2.5	22	
132	Identifying Au-based Te alloys for optical data storage. <i>Journal of Applied Physics</i> , 2004 , 95, 7567-7572	2.5	4	
131	Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses. <i>Applied Physics Letters</i> , 2004 , 84, 2250-2252	3.4	168	
130	Structure of liquid Te-based alloys used in rewritable DVDs. <i>Physica B: Condensed Matter</i> , 2004 , 350, E1	0 <u>5</u> 5⊱E1	053	

129	Influence of nitrogen content on properties of direct current sputtered TiOxNy films. <i>Physica Status Solidi A</i> , 2004 , 201, 90-102		63
128	Composition and formation mechanism of zirconium oxynitride films produced by reactive direct current magnetron sputtering. <i>Physica Status Solidi A</i> , 2004 , 201, 967-976		2 0
127	Influence of Sn doping upon the phase change characteristics of Ge2Sb2Te5. <i>Physica Status Solidi A</i> , 2004 , 201, 3087-3095		36
126	The Dependence of Crystal Structure of Te-Based Phase-Change Materials on the Number of Valence Electrons. <i>Advanced Materials</i> , 2004 , 16, 439-443	24	54
125	Thermal stability of sputtered zirconium oxide films. <i>Vacuum</i> , 2004 , 75, 7-16	3.7	24
124	Hydrogen-induced changes of mechanical stress and optical transmission in thin Pd films. <i>Thin Solid Films</i> , 2004 , 458, 299-303	2.2	35
123	Effect of heat treatment on structural, optical and mechanical properties of sputtered TiOxNy films. <i>Thin Solid Films</i> , 2004 , 468, 48-56	2.2	56
122	Unidirectional anisotropies in perylene crystal growth on a liquid surface. <i>Journal of Crystal Growth</i> , 2004 , 269, 542-549	1.6	21
121	Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films. Journal of Applied Physics, 2004 , 95, 1911-1917	2.5	232
120	In situ measurements of thickness changes and mechanical stress upon gasochromic switching of thin MoOx films. <i>Journal of Applied Physics</i> , 2004 , 95, 7632-7636	2.5	38
119	Structureperformance relationship in pentacene/Al2O3 thin-film transistors. <i>Synthetic Metals</i> , 2004 , 146, 279-282	3.6	59
118	Ultrathin Metal Films. Springer Tracts in Modern Physics, 2004,	0.1	43
117	Preparation and characterization of tantalum oxide films produced by reactive DC magnetron sputtering. <i>Physica Status Solidi A</i> , 2003 , 198, 99-110		47
116	Properties of TiOx coatings prepared by dc magnetron sputtering. <i>Physica Status Solidi A</i> , 2003 , 198, 224-237		37
115	Correlation between structure, stress and optical properties in direct current sputtered molybdenum oxide films. <i>Thin Solid Films</i> , 2003 , 429, 135-143	2.2	78
114	Modifying the growth of organic thin films by a self-assembled monolayer. <i>Journal of Applied Physics</i> , 2003 , 93, 4852-4855	2.5	18
113	Kinetics of Crystal Nucleation and Growth in Thin Films of Amorphous Te Alloys measured by Atomic Force Microscopy. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 803, 183		
112	Mechanical stresses upon hydrogen induced optical switching in thin films. <i>Journal of Applied Physics</i> , 2003 , 93, 6034-6038	2.5	21

(2001-2003)

111	Identification of Te alloys with suitable phase change characteristics. <i>Applied Physics Letters</i> , 2003 , 83, 2572-2574	3.4	67
110	Calorimetric measurements of phase transformations in thin films of amorphous Te alloys used for optical data storage. <i>Journal of Applied Physics</i> , 2003 , 93, 2389-2393	2.5	105
109	Viscosity and elastic constants of thin films of amorphous Te alloys used for optical data storage. Journal of Applied Physics, 2003 , 94, 4908	2.5	73
108	Material Aspects of Reactively MF-Sputtered Zinc Oxide for TCO Application in Silicon Thin Film Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 762, 7111		10
107	Thermal Stability of Lead Oxide Films Prepared by Reactive DC Magnetron Sputtering. <i>Physica Status Solidi A</i> , 2002 , 194, 192-205		13
106	The quest for fast phase change materials. <i>Journal of Magnetism and Magnetic Materials</i> , 2002 , 249, 492	2- 4.9 8	20
105	Crystallization kinetics of Ge4Sb1Te5 films. <i>Thin Solid Films</i> , 2002 , 408, 310-315	2.2	66
104	Gasochromic switching of tungsten oxide films: a correlation between film properties and coloration kinetics. <i>Thin Solid Films</i> , 2002 , 414, 288-295	2.2	30
103	Synthesis and mechanical properties of BCN coatings deposited by PECVD. <i>Vacuum</i> , 2002 , 68, 335-339	3.7	14
102	Temperature stability of sputtered niobiumBxide films. <i>Journal of Applied Physics</i> , 2002 , 91, 4863-4871	2.5	75
101	Observation of an exchange anisotropy in Fe/Ni bilayers on Cu(100). Physical Review B, 2002, 65,	3.3	4
100	Diffusion studies in a nonequilibrium system with repulsive interactions. <i>Physical Review B</i> , 2002 , 65,	3.3	6
99	Correlation between structure, stress and deposition parameters in direct current sputtered zinc oxide films. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2002 , 20, 2084	2.9	92
98	Density changes upon crystallization of Ge2Sb2.04Te4.74 films. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2002 , 20, 230-233	2.9	292
97	Growth and characterization of zirconium oxynitride films prepared by reactive direct current magnetron sputtering. <i>Journal of Applied Physics</i> , 2002 , 92, 2461-2466	2.5	48
96	Structural and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron sputtering. <i>Journal of Applied Physics</i> , 2002 , 92, 3599-3607	2.5	108
95	Fragmentation, rings and coarsening: structure and transformations of nanocrystal aggregate networks on a liquid surface. <i>Surface Science</i> , 2002 , 497, 100-112	1.8	31
94	Optical, electrical and structural properties of Alli and Allr thin films. <i>Thin Solid Films</i> , 2001 , 388, 237-2	4 <u>4</u> 2	20

93	Morphology and structure of laser-modified Ge2Sb2Te5 films studied by transmission electron microscopy. <i>Thin Solid Films</i> , 2001 , 389, 239-244	2.2	49
92	Characterization of Niobium Oxide Films Prepared by Reactive DC Magnetron Sputtering. <i>Physica Status Solidi A</i> , 2001 , 188, 1047-1058		38
91	Stability of the perpendicular magnetic anisotropy of ultrathin Ni films on Cu(100) upon multiple magnetization reversals. <i>Physical Review B</i> , 2001 , 63,	3.3	8
90	Magnetic properties of Fe/Ni bilayers on Cu(100). <i>Physical Review B</i> , 2001 , 64,	3.3	25
89	Structural and optical properties of thin lead oxide films produced by reactive direct current magnetron sputtering. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2001 , 19, 2870	2.9	42
88	Laser induced crystallization of amorphous Ge2Sb2Te5 films. <i>Journal of Applied Physics</i> , 2001 , 89, 3168-	-3⊴.₹6	268
87	Crystallization kinetics of sputter-deposited amorphous AgInSbTe films. <i>Journal of Applied Physics</i> , 2001 , 90, 3816-3821	2.5	65
86	Mechanical stresses upon crystallization in phase change materials. <i>Applied Physics Letters</i> , 2001 , 79, 3597-3599	3.4	130
85	Exploring the limits of fast phase change materials. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 674, 1		8
84	Microscopic studies of fast phase transformations in GeSbTe films. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 674, 1		5
83	Unusual Magnetic Properties of Fe/Ni Bilayers on Cu(100). <i>Materials Research Society Symposia Proceedings</i> , 2000 , 648, 1		
82	Physical properties of thin GeO2 films produced by reactive DC magnetron sputtering. <i>Thin Solid Films</i> , 2000 , 365, 82-89	2.2	57
81	Defect formation upon reactive direct-current magnetron sputtering of GeO2 films. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2000 , 18, 42-47	2.9	2
80	Minimum time for laser induced amorphization of Ge2Sb2Te5 films. <i>Journal of Applied Physics</i> , 2000 , 88, 657-664	2.5	68
79	Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements. Journal of Applied Physics, 2000 , 87, 4130-4134	2.5	571
78	Modeling of laser pulsed heating and quenching in optical data storage media. <i>Journal of Applied Physics</i> , 1999 , 86, 1808-1816	2.5	39
77	High-power laser light source for near-field optics and its application to high-density optical data storage. <i>Applied Physics Letters</i> , 1999 , 75, 1515-1517	3.4	132
76	Antiferromagnetic coupling in fcc Fe overlayers on Ni/Cu(100). <i>Physical Review B</i> , 1999 , 60, 12945-1294	93.3	24

75	Advanced characterization tools for thin films in low-E systems. <i>Thin Solid Films</i> , 1999 , 351, 184-189	2.2	38
74	Tetragonal distortion of Mn films on Cu3Au(100). Physical Review B, 1999, 60, 5895-5903	3.3	16
73	Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5. <i>Journal of Applied Physics</i> , 1999 , 86, 5879-5887	2.5	118
72	Silver deposition on oil Eluster nucleation, growth and aggregation on a liquid surface. <i>Surface Science</i> , 1999 , 432, 228-238	1.8	24
71	Correlation between the microscopic and macroscopic magnetic properties in ultrathin Fe/Cu(100)-films. <i>Journal of Magnetism and Magnetic Materials</i> , 1998 , 183, 35-41	2.8	26
70	Structure and growth of ultrathin iron films on. Surface Science, 1998, 399, 70-79	1.8	12
69	Nucleation, Growth, and Aggregation of Ag Clusters on Liquid Surfaces. <i>Physical Review Letters</i> , 1998 , 81, 622-625	7.4	119
68	Magnetism, structure, and morphology of ultrathin Fe films on Cu3Au(100). <i>Physical Review B</i> , 1998 , 57, 1014-1023	3.3	32
67	Structure, growth, and magnetism of Mn on Cu(110). Physical Review B, 1998, 57, 2607-2620	3.3	38
66	Limits of metastable epitaxy: The structure of ultrathin Fe films on Cu3Au(100). <i>Physical Review B</i> , 1998 , 58, 4984-4991	3.3	24
65	Electronic structure of two-dimensional magnetic alloys: c(2½) Mn on Cu(100) and Ni(100). <i>Physical Review B</i> , 1997 , 55, 5404-5415	3.3	88
64	Atomic mechanisms for the diffusion of Mn atoms incorporated in the Cu(100) surface: an STM study. <i>Surface Science</i> , 1997 , 371, 1-13	1.8	44
63	Atomic mechanisms of the formation of an ordered surface alloy: an STM investigation of. <i>Surface Science</i> , 1997 , 371, 14-29	1.8	47
62	Strain-induced perpendicular magnetic anisotropy in ultrathin Ni films on Cu3Au(0 0 1). <i>Journal of Magnetism and Magnetic Materials</i> , 1997 , 171, 16-28	2.8	36
61	Correlation satellite driven by reduced dimensionality. <i>Europhysics Letters</i> , 1997 , 39, 429-434	1.6	33
60	ULTRATHIN METAL FILMS BY DESIGN: EXPLOITING THE CLOSE CORRELATION BETWEEN STRUCTURE AND MAGNETISM. <i>Surface Review and Letters</i> , 1996 , 03, 1473-1486	1.1	7
59	Theoretical study of surface alloy formation through generation and annihilation of vacancies. <i>Surface Science</i> , 1996 , 352-354, 552-556	1.8	7
58	Vacancy generation at steps and the kinetics of surface alloy formation. <i>Surface Science</i> , 1996 , 364, 453	3-466	23

57	Comment on "Structure of the Mn-induced Cu(100) c(2 x 2) surface". <i>Physical Review B</i> , 1996 , 53, 7551-7	′5 ,5 ₃ 4	28
56	Structural Instability of Ferromagnetic fcc Fe Films on Cu(100). <i>Physical Review Letters</i> , 1995 , 74, 765-76	8 9.4	292
55	The correlation between structure and magnetism for ultrathin metal films and surface alloys. <i>Surface Science</i> , 1995 , 331-333, 659-672	1.8	87
54	Structural and magnetic properties of ultrathin Fe films deposited at low temperature on Cu(100). <i>Surface Science</i> , 1994 , 321, 32-46	1.8	49
53	Structure and growth of Cr on Cu(100). Surface Science, 1994, 319, 287-297	1.8	22
52	LEED structure determination of the c(8 12)Mn phase on Cu(100). Surface Science, 1994 , 303, 36-44	1.8	15
51	Quantification of the composition of alloy and oxide surfaces using low-energy ion scattering. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1994 , 12, 2308-2313	2.9	42
50	LEED structure determination of two ordered surface alloys: Cu(100)-c(2 ☑)Mn and Ni(100)-c(2 ☐ 2)Mn. <i>Surface Science</i> , 1993 , 292, 189-195	1.8	82
49	Structure determination for Fe films on Cu(100). Surface Science, 1993, 282, 237-245	1.8	78
48	Structural transformations of fcc iron films on Cu(100). Surface Science, 1993 , 291, 14-28	1.8	99
47	Magnetically driven buckling and stability of ordered surface alloys: Cu(100)c(2 x 2)Mn. <i>Physical Review Letters</i> , 1993 , 70, 3619-3622	7.4	173
46	Structure and growth of Mn on Ni(100). Physical Review B, 1993, 48, 12082-12092	3.3	29
45	LEED structure determination of tetragonal MnNi films on Ni(100). <i>Physical Review B</i> , 1993 , 48, 12130-1	231335	12
44	Vibrational Spectroscopy of Alloy Surfaces and Adsorbate-Covered Metal Surfaces. <i>Springer Proceedings in Physics</i> , 1993 , 105-115	0.2	
43	Magnetic live surface layers in Fe/Cu(100). <i>Physical Review Letters</i> , 1992 , 69, 3831-3834	7.4	455
42	Growth, structure and morphology of ultrathin iron films on Cu(100). Surface Science, 1992 , 264, 406-41	8 1.8	118
41	Structure and growth of Mn on Cu(100). Surface Science, 1992 , 279, 251-264	1.8	83
40	Ultrathin, Epitaxial Aluminum Oxide on Nial(110). <i>Materials Research Society Symposia Proceedings</i> , 1991 , 221, 143		8

39	Formation of a well-ordered aluminium oxide overlayer by oxidation of NiAl(110). <i>Surface Science</i> , 1991 , 259, 235-252	1.8	502
38	Low-temperature p2mg (2 \square 1) structure of ultrathin epitaxial films Fe/Cu(100). Surface Science, 1991 , 256, 115-122	1.8	51
37	Surface phonon dispersion of alloy surfaces. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1990 , 54-55, 383-394	1.7	3
36	Amplitude weighted density of bulk and surface vibrations; ultrafine nickel particles. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1990 , 54-55, 425-443	1.7	5
35	Order-disorder transition of two-monolayer Fe films on the Cu(100) surface. <i>Vacuum</i> , 1990 , 41, 408-411	3.7	2
34	Structure and dynamics of NiAl(110). Vacuum, 1990 , 41, 433-436	3.7	4
33	Comment on "Enhanced anharmonicity in the interaction of low-Z adsorbates with metal surfaces". <i>Physical Review Letters</i> , 1990 , 65, 1521	7.4	4
32	Electron-energy-loss cross-section and surface lattice-dynamics studies of NiAl(110). <i>Physical Review B</i> , 1990 , 42, 5451-5458	3.3	15
31	Surface-phonon dispersion of NiAl(110). <i>Physical Review B</i> , 1990 , 42, 5443-5450	3.3	20
30	Surface phonon dispersion of Ni90Pt10(001). Surface Science, 1990, 234, 231-236	1.8	
30 29	Surface phonon dispersion of Ni90Pt10(001). Surface Science, 1990, 234, 231-236 Structure and composition of Pt10Ni90(100): A low energy electron diffraction study. Surface Science, 1990, 233, 239-247	1.8	56
	Structure and composition of Pt10Ni90(100): A low energy electron diffraction study. <i>Surface</i>		56 6
29	Structure and composition of Pt10Ni90(100): A low energy electron diffraction study. <i>Surface Science</i> , 1990 , 233, 239-247 Oxygen induced reconstruction on Cu(100). <i>Journal of Vacuum Science and Technology A: Vacuum</i> ,	1.8	
29	Structure and composition of Pt10Ni90(100): A low energy electron diffraction study. Surface Science, 1990, 233, 239-247 Oxygen induced reconstruction on Cu(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 1922-1925	1.8	6
29 28 27	Structure and composition of Pt10Ni90(100): A low energy electron diffraction study. Surface Science, 1990, 233, 239-247 Oxygen induced reconstruction on Cu(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 1922-1925 Structural models for the Cu(100)()R45🛘-O phase. Surface Science Letters, 1989, 224, L979-L982	1.8	6
29 28 27 26	Structure and composition of Pt10Ni90(100): A low energy electron diffraction study. Surface Science, 1990, 233, 239-247 Oxygen induced reconstruction on Cu(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 1922-1925 Structural models for the Cu(100)()R45🖰-O phase. Surface Science Letters, 1989, 224, L979-L982 Oxygen on Cu(100) 🗈 case of an adsorbate induced reconstruction. Surface Science, 1989, 213, 103-136	1.8	6 1 170
29 28 27 26 25	Structure and composition of Pt10Ni90(100): A low energy electron diffraction study. Surface Science, 1990, 233, 239-247 Oxygen induced reconstruction on Cu(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 1922-1925 Structural models for the Cu(100)()R45E-O phase. Surface Science Letters, 1989, 224, L979-L982 Oxygen on Cu(100) (a case of an adsorbate induced reconstruction. Surface Science, 1989, 213, 103-136) New aspects of the disordered adsorption of oxygen on Ni(100). Surface Science, 1989, 215, 65-73	1.8 2.9 1.8	6 1 170 19

21	Surface-phonon dispersion curves of TiC(100). <i>Physical Review B</i> , 1987 , 36, 7510-7517	3.3	33
20	Surface phonon dispersion of Cu(100)-p(20)S. Surface Science, 1987, 187, 58-66	1.8	8
19	The adsorption of sulfur, carbon monoxide and oxygen on NiAl(111). <i>Surface Science</i> , 1987 , 189-190, 438-447	1.8	39
18	Surface phonon dispersion of HfC(100). Surface Science, 1987, 192, 573-582	1.8	15
17	Oxygen on Cu(100): a new type of an adsorbate induced reconstruction. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1987 , 44, 317-323	1.7	23
16	The Rayleigh phonon dispersion on Cu(100): A stress induced frequency shift?. <i>European Physical Journal B</i> , 1986 , 65, 71-74	1.2	79
15	Surface phonon dispersion of Cu(100)c(20)N. European Physical Journal B, 1986, 64, 453-459	1.2	30
14	The Rayleigh phonon dispersion curve on Cu(100) in the ⊠ direction. <i>Solid State Communications</i> , 1986 , 57, 445-447	1.6	84
13	Adsorbate-induced surface stress: Phonon anomaly and reconstruction on Ni(001) surfaces. <i>Physical Review Letters</i> , 1986 , 56, 1583-1586	7.4	103
12	Tailoring Crystallization Kinetics of Chalcogenides for Photonic Applications. <i>Advanced Electronic Materials</i> ,2100974	6.4	4
11	Halide perovskites: third generation photovoltaic materials empowered by metavalent bonding		2
10	Halide Perovskites: Advanced Photovoltaic Materials Empowered by a Unique Bonding Mechanism. <i>Advanced Functional Materials</i> ,2110166	15.6	11
9	Poster: Memristive Systems523-587		
8	Nanosession: Molecular and Polymer Electronics453-460		
7	Nanosession: Neuromorphic Concepts197-206		
6	Disorder Induced Metal-Insulator Transition in Phase Change Materials47-47		
5	Nanosession: Phase Change Materials155-162		
4	How to Identify Lone Pairs, Van der Waals Gaps, and Metavalent Bonding Using Charge and Pair Density Methods: From Elemental Chalcogens to Lead Chalcogenides and Phase-Change Materials. <i>Physica Status Solidi - Rapid Research Letters</i> ,2000534	2.5	6

LIST OF PUBLICATIONS

3	Ultra-Thin Switchable Absorbers Based on Lossy Phase-Change Materials. <i>Advanced Optical Materials</i> ,2101118	8.1	6
2	Retarding Ostwald ripening through Gibbs adsorption and interfacial complexions leads to	35.4	19

Fragile-to-Strong Transition in Phase-Change Material Ge 3 Sb 6 Te 5. Advanced Functional Materials,22027,164 2