Ronald L Neppl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7897868/publications.pdf

Version: 2024-02-01

23 papers 876 citations

687363 13 h-index 752698 20 g-index

25 all docs

25 docs citations

25 times ranked

1504 citing authors

#	Article	IF	CITATIONS
1	Impact of frailty on outcomes in surgical patients: A systematic review and meta-analysis. American Journal of Surgery, 2019, 218, 393-400.	1.8	188
2	DOT1L regulates dystrophin expression and is critical for cardiac function. Genes and Development, 2011, 25, 263-274.	5.9	129
3	The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly. Journal of Cell Biology, 2011, 194, 551-565.	5. 2	99
4	The cAMP-responsive Rap1 Guanine Nucleotide Exchange Factor, Epac, Induces Smooth Muscle Relaxation by Down-regulation of RhoA Activity. Journal of Biological Chemistry, 2011, 286, 16681-16692.	3.4	84
5	Assessment of Contractility of Purified Smooth Muscle Cells Derived from Embryonic Stem Cells. Stem Cells, 2006, 24, 1678-1688.	3.2	59
6	Thromboxane A2-induced Bi-directional Regulation of Cerebral Arterial Tone. Journal of Biological Chemistry, 2009, 284, 6348-6360.	3.4	48
7	lncRNA Chronos is an aging-induced inhibitor of muscle hypertrophy. Journal of Cell Biology, 2017, 216, 3497-3507.	5.2	47
8	Myocardin is differentially required for the development of smooth muscle cells and cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1707-H1721.	3.2	38
9	Deletion of the Protein Kinase A/Protein Kinase G Target SMTNL1 Promotes an Exercise-adapted Phenotype in Vascular Smooth Muscle. Journal of Biological Chemistry, 2008, 283, 11850-11859.	3.4	37
10	Crystallin- $\hat{l}\pm B$ Regulates Skeletal Muscle Homeostasis via Modulation of Argonaute2 Activity. Journal of Biological Chemistry, 2014, 289, 17240-17248.	3.4	32
11	MicroRNAs in Cardiac Remodeling and Disease. Journal of Cardiovascular Translational Research, 2010, 3, 212-218.	2.4	26
12	The myriad essential roles of microRNAs in cardiovascular homeostasis and disease. Genes and Diseases, 2014, 1, 18-39.	3.4	23
13	A porous collagenâ€GAG scaffold promotes muscle regeneration following volumetric muscle loss injury. Wound Repair and Regeneration, 2020, 28, 61-74.	3.0	18
14	Application of MicroRNA in Cardiac and Skeletal Muscle Disease Gene Therapy. Methods in Molecular Biology, 2011, 709, 197-210.	0.9	10
15	Loss of ARNT in skeletal muscle limits muscle regeneration in aging. FASEB Journal, 2020, 34, 16086-16104.	0.5	10
16	Smooth(ing) Muscle Differentiation by MicroRNAs. Cell Stem Cell, 2009, 5, 130-132.	11,1	9
17	Influence of Age on Skeletal Muscle Hypertrophy and Atrophy Signaling: Established Paradigms and Unexpected Links. Genes, 2021, 12, 688.	2.4	6
18	Exercise-induced gene expression changes in skeletal muscle of old mice. Genomics, 2021, 113, 2965-2976.	2.9	6

#	Article	IF	CITATIONS
19	Adult-Onset Myopathy with Constitutive Activation of Akt following the Loss of hnRNP-U. IScience, 2020, 23, 101319.	4.1	5
20	â€~CArG'ing for microRNAs. Gastroenterology, 2011, 141, 24-27.	1.3	1
21	Nuclear localized Akt limits skeletal muscle derived fibrotic signaling. Biochemical and Biophysical Research Communications, 2019, 508, 838-843.	2.1	O
22	The cAMP responsive Rap 1 guanine nucleotide exchange factor, Epac, induces smooth muscle relaxation by down regulation of RhoA activity. FASEB Journal, $2011, 25, \ldots$	0.5	0
23	IncRNA Chronos Exacerbates Pathological Cardiac Dysfunction and Fibrosis. FASEB Journal, 2019, 33, 778.9.	0.5	0