
Zhen-Yu Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7897764/publications.pdf Version: 2024-02-01

ΖΗΕΝ-ΥΠ ΤΙΛΝ

#	Article	IF	CITATIONS
1	Oxidative Dehydrogenation of Propane to Olefins Promoted by Zr Modified ZSM-5. Catalysis Letters, 2023, 153, 285-299.	1.4	8
2	Pyrolysis study of N, N-dimethylformamide at low pressure. Journal of Analytical and Applied Pyrolysis, 2022, 162, 105426.	2.6	8
3	Investigation of the Laminar Premixed n-Propylamine Flame. Journal of Thermal Science, 2022, 31, 854-866.	0.9	2
4	Experimental and kinetic study of pyridine oxidation under the fuel-lean condition in a jet-stirred reactor. Combustion and Flame, 2022, 243, 112042.	2.8	6
5	Oxidative Dehydrogenation of Propane into Propene over Chromium Oxides. Industrial & Engineering Chemistry Research, 2022, 61, 4546-4560.	1.8	18
6	M-Emu: A Platform for Multicast Emulation. Electronics (Switzerland), 2022, 11, 1152.	1.8	0
7	Effect of Thermal Radiation Heat Transfer on the Temperature Measurement by the Thermocouple in Premixed Laminar Flames. Journal of Thermal Science, 2022, 31, 541-551.	0.9	5
8	Pyrolysis of norbornadiene: An experimental and kinetic modeling study. Combustion and Flame, 2022, 242, 112155.	2.8	4
9	A comparative study on the laminar C1–C4 n-alkane/NH3 premixed flame. Fuel, 2022, 324, 124732.	3.4	15
10	Pyrolysis study of iso-propylamine with SVUV-photoionization molecular-beam mass spectrometry. Combustion and Flame, 2022, 244, 112232.	2.8	6
11	Mechanistic study of the CO oxidation reaction on the CuO (111) surface during chemical looping combustion. Proceedings of the Combustion Institute, 2021, 38, 5289-5297.	2.4	18
12	Catalytic combustion of CO over Cu-doped iron oxides: CO2 effects on activity. Fuel, 2021, 289, 119760.	3.4	8
13	A merged kinetic mechanism study of two aviation surrogate fuels. Fuel, 2021, 289, 119767.	3.4	8
14	Understanding the effect of CaO on HCN conversion and NOx formation during the circulating fluidized combustion process using DFT calculations. Proceedings of the Combustion Institute, 2021, 38, 5355-5362.	2.4	10
15	An experimental investigation of furfural oxidation and the development of a comprehensive combustion model. Combustion and Flame, 2021, 226, 200-210.	2.8	16
16	Influence of Co addition on Ni-Co mixed oxide catalysts toward the deep oxidation of low-rank unsaturated hydrocarbons. Applied Catalysis A: General, 2021, 612, 117990.	2.2	7
17	Insight into one-step synthesis of active amorphous La-Co thin films for catalytic oxidation of CO. Applications in Energy and Combustion Science, 2021, 5, 100021.	0.9	4
18	Pyrolysis study of a three-component surrogate jet fuel. Combustion and Flame, 2021, 226, 190-199.	2.8	13

#	Article	IF	CITATIONS
19	Ab Initio Calculation of Surface Thermochemistry for Popular Solid Transition Metal-Based Species. ACS Omega, 2021, 6, 22525-22536.	1.6	2
20	Experimental and kinetic modeling study of benzyl alcohol pyrolysis. Combustion and Flame, 2021, 231, 111477.	2.8	4
21	Pyrolysis of 2-methylfuran/jet fuel surrogate blends: An experimental and kinetic modeling study. Combustion and Flame, 2021, 232, 111509.	2.8	3
22	Pyrolysis investigation of n-propylamine with synchrotron photoionization and molecular-beam mass spectrometry. Combustion and Flame, 2021, 232, 111511.	2.8	11
23	CO2 effect on catalytic abatement of VOC emissions over Cu-Co binary oxide films. Materials Research Bulletin, 2021, 143, 111456.	2.7	1
24	An experimental and modeling study of oxidation of real RP-3 aviation kerosene. Fuel, 2021, 305, 121476.	3.4	5
25	Role of copper grid mesh in the catalytic oxidation of CO over one-step synthesized Cu-Fe-Co ternary oxides thin film. Chinese Chemical Letters, 2020, 31, 1201-1206.	4.8	17
26	Influence of metakaolinization temperature on the structure and activity of metakaolin supported Ni catalyst in dry methane reforming. Journal of Environmental Chemical Engineering, 2020, 8, 103239.	3.3	9
27	Support effect on the catalytic activity and stability of non-crystal ternary oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124218.	2.3	6
28	Investigation on the co-combustion mechanism of coal and biomass on a fixed-bed reactor with advanced mass spectrometry. Renewable Energy, 2020, 149, 1068-1076.	4.3	9
29	Pyrolysis study of 1,2,4-trimethylcyclohexane with SVUV-photoionization molecular-beam mass spectrometry. Combustion and Flame, 2020, 219, 449-455.	2.8	4
30	Insights into the role of surface functional species in Cu-Mn-O thin film catalysts for N2O decomposition. Applications in Energy and Combustion Science, 2020, 1-4, 100011.	0.9	1
31	Oxidation study of benzaldehyde with synchrotron photoionization and molecular beam mass spectrometry. Combustion and Flame, 2020, 220, 455-467.	2.8	9
32	Controlled synthesis of α-Fe2O3@Fe3O4 composite catalysts for exhaust gas purification. Proceedings of the Combustion Institute, 2019, 37, 5445-5453.	2.4	15
33	An experimental and modeling study of oxidation of 1,2,4-trimethylcyclohexane with JSR. Proceedings of the Combustion Institute, 2019, 37, 437-444.	2.4	9
34	Enhanced property of thin cuprous oxide film prepared through green synthetic route. Chinese Journal of Chemical Physics, 2019, 32, 365-372.	0.6	8
35	Pyrolysis study of iso-propylbenzene with photoionization and molecular beam mass spectrometry. Combustion and Flame, 2019, 209, 313-321.	2.8	20
36	Combustion study of a surrogate jet fuel. Combustion and Flame, 2019, 202, 252-261.	2.8	37

#	Article	IF	CITATIONS
37	Cu-Promoted Cobalt Oxide Film Catalyst for Efficient Gas Emissions Abatement. Journal of Thermal Science, 2019, 28, 225-231.	0.9	11
38	A detailed kinetic study on oxidation of benzyl alcohol. Combustion and Flame, 2019, 207, 10-19.	2.8	11
39	Oxidation chemistry of four C9H12 isomeric transportation fuels: Experimental and modeling studies. Combustion and Flame, 2019, 205, 165-179.	2.8	19
40	Experimental and kinetic investigation of pyrolysis and oxidation of nitromethane. Combustion and Flame, 2019, 203, 247-254.	2.8	31
41	An efficient and innovative catalytic reactor for VOCs emission control. Science Bulletin, 2019, 64, 625-633.	4.3	12
42	Experimental and kinetic study on the low-temperature oxidation of pyridine as a representative of fuel-N compounds. Combustion and Flame, 2019, 202, 394-404.	2.8	35
43	An experimental and modeling study on the low temperature oxidation of surrogate for JP-8 part II: Comparison between neat 1,3,5-trimethylbenzene and its mixture with n-decane. Combustion and Flame, 2018, 192, 517-529.	2.8	13
44	A wide-range experimental and modeling study of oxidation and combustion of n-propylbenzene. Combustion and Flame, 2018, 191, 53-65.	2.8	25
45	An experimental and modeling study on the low temperature oxidation of surrogate for JP-8 part I: Neat 1,3,5-trimethylbenzene. Combustion and Flame, 2018, 192, 507-516.	2.8	18
46	Mechanism of CO Oxidation on Cu ₂ O (111) Surface: A DFT and Microkinetic Study. International Journal of Chemical Kinetics, 2018, 50, 507-514.	1.0	22
47	Combustion characteristics of well-dispersed boron submicroparticles and plasma effect. Combustion and Flame, 2018, 188, 94-103.	2.8	12
48	Particle size-band gap energy-catalytic properties relationship of PSE-CVD-derived Fe3O4 thin films. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 427-435.	2.7	42
49	DFT Study on CO Catalytic Oxidation Mechanism on the Defective Cu ₂ O(111) Surface. Journal of Physical Chemistry C, 2018, 122, 16733-16740.	1.5	32
50	Experimental and Modeling Study of Low Temperature Oxidation of Iso-propylbenzene with JSR. Energy & Fuels, 2018, 32, 8781-8788.	2.5	6
51	Experimental and theoretical study on acetone pyrolysis in a jet-stirred reactor. Fuel, 2018, 234, 1380-1387.	3.4	13
52	CVD synthesis of Cu-doped cobalt spinel thin film catalysts for kinetic study of propene oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 556, 195-200.	2.3	20
53	Facile Synthesis of Efficient Cu-Co-Fe Ternary Oxides by Pulsed-spray Evaporation CVD for CO Oxidation. ES Energy & Environments, 2018, , .	0.5	4
54	Online study on the co-pyrolysis of coal and corn with vacuum ultraviolet photoionization mass spectrometry. Bioresource Technology, 2017, 244, 125-131.	4.8	13

#	Article	IF	CITATIONS
55	CVD synthesis of cobalt spinel for bio-butanol combustion. Surface and Coatings Technology, 2017, 326, 11-17.	2.2	9
56	Experimental and kinetic investigation of 1,2,4-trimethylbenzene oxidation at low temperature. Proceedings of the Combustion Institute, 2017, 36, 909-917.	2.4	31
57	New insights in the low-temperature oxidation of acetylene. Proceedings of the Combustion Institute, 2017, 36, 355-363.	2.4	43
58	Investigation on the structure stability and catalytic activity of Cu–Co binary oxides. Proceedings of the Combustion Institute, 2017, 36, 4375-4382.	2.4	19
59	<i>In situ</i> Fourier Transform Infrared Spectroscopy Diagnostic for Characterization and Performance Test of Catalysts. Chinese Journal of Chemical Physics, 2017, 30, 513-520.	0.6	3
60	CVDâ€Made Spinels: Synthesis, Characterization and Applications for Clean Energy. , 2017, , .		1
61	Stainless steel grid mesh-supported CVD made Co3O4 thin films for catalytic oxidation of VOCs of olefins type at low temperature. Journal of Industrial and Engineering Chemistry, 2016, 35, 253-261.	2.9	28
62	Innovative CVD synthesis of Cu2O catalysts for CO oxidation. Applied Catalysis B: Environmental, 2016, 186, 10-18.	10.8	67
63	CVD synthesis and catalytic combustion application of chromium oxide films. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1001-1005.	0.8	2
64	Cobalt-iron oxides made by CVD for low temperature catalytic application. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1508-1513.	0.8	14
65	Tailored synthesis of CoO _X thin films for catalytic application. RSC Advances, 2015, 5, 97272-97278.	1.7	12
66	CVD synthesis of Cu ₂ O films for catalytic application. RSC Advances, 2015, 5, 42477-42481.	1.7	26
67	Low-temperature deep oxidation of olefins and DME over cobalt ferrite. Proceedings of the Combustion Institute, 2015, 35, 2207-2214.	2.4	49
68	Catalytic complete oxidation of acetylene and propene over clay versus cordierite honeycomb monoliths without and with chemical vapor deposited cobalt oxide. Chemical Engineering Journal, 2015, 262, 1252-1259.	6.6	31
69	In situ characterization of Cu–Co oxides for catalytic application. Faraday Discussions, 2015, 177, 249-262.	1.6	54
70	Structure–activity relation of spinel-type Co–Fe oxides for low-temperature CO oxidation. Catalysis Science and Technology, 2014, 4, 3359.	2.1	89
71	Pulsed-spray evaporation CVD synthesis of hematite thin films for catalytic conversion of CO. Surface and Coatings Technology, 2013, 230, 59-65.	2.2	24
72	Facile synthesis of catalytically active copper oxide from pulsed-spray evaporation CVD. Surface and Coatings Technology, 2013, 230, 33-38.	2.2	28

#	Article	IF	CITATIONS
73	Towards biofuel combustion with an easily extruded clay as a natural catalyst. Applied Energy, 2013, 107, 149-156.	5.1	11
74	Selective synthesis of α-Fe2O3 thin films and effect of the deposition temperature and lattice oxygen on the catalytic combustion of propene. Journal of Materials Chemistry A, 2013, 1, 10495.	5.2	41
75	Structure sensitivity of propene oxidation over Co-Mn spinels. Proceedings of the Combustion Institute, 2013, 34, 2261-2268.	2.4	38
76	Synthesis of the Catalytically Active Mn ₃ O ₄ Spinel and Its Thermal Properties. Journal of Physical Chemistry C, 2013, 117, 6218-6224.	1.5	149
77	Controlled synthesis of Co3O4 spinel with Co(acac)3 as precursor. RSC Advances, 2012, 2, 10809.	1.7	32
78	Catalytic oxidation of VOCs over mixed Co–Mn oxides. Applied Catalysis B: Environmental, 2012, 117-118, 125-134.	10.8	220
79	An experimental and kinetic investigation of premixed furan/oxygen/argon flames. Combustion and Flame, 2011, 158, 756-773.	2.8	113
80	A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame. Proceedings of the Combustion Institute, 2011, 33, 233-241.	2.4	79
81	A lean methane premixed laminar flame doped with components of diesel fuel part III: Indane and comparison between n-butylbenzene, n-propylcyclohexane and indane. Combustion and Flame, 2010, 157, 1236-1260.	2.8	30
82	Nickel and Nickel-Based Nanoalloy Thin Films from Alcohol-Assisted Chemical Vapor Deposition. Chemistry of Materials, 2010, 22, 92-100.	3.2	44
83	Study of Low-Pressure Premixed Dimethyl Ether/Hydrogen/Oxygen/Argon Laminar Flames with Photoionization Mass Spectrometry. Energy & Fuels, 2010, 24, 1628-1635.	2.5	21
84	An experimental study of the rich premixed ethylbenzene flame at low pressure. Proceedings of the Combustion Institute, 2009, 32, 647-655.	2.4	51
85	An experimental and kinetic modeling study of a premixed nitromethane flame at low pressure. Proceedings of the Combustion Institute, 2009, 32, 311-318.	2.4	70
86	Study of low-pressure premixed laminar n-heptane+propane/oxygen/nitrogen flames. Science Bulletin, 2009, 54, 1477-1486.	4.3	2
87	Study of combustion intermediates in fuelâ€rich methyl methacrylate flame with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 85-92.	0.7	14
88	ldentification of intermediates in an n-heptane/oxygen/argon low-pressure premixed laminar flame using synchrotron radiation. Fuel, 2009, 88, 1752-1757.	3.4	12
89	Experiment study of oxygenates impact on n-heptane flames with tunable synchrotron vacuum UV photoionization. Fuel, 2009, 88, 2297-2302.	3.4	19
90	Investigation of the rich premixed laminar acetylene/oxygen/argon flame: Comprehensive flame structure and special concerns of polyynes. Proceedings of the Combustion Institute, 2009, 32, 1293-1300.	2.4	66

#	Article	IF	CITATIONS
91	An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure. Combustion and Flame, 2009, 156, 1413-1426.	2.8	359
92	Effect of the pressure on the catalytic oxidation of volatile organic compounds over Ag/Al2O3 catalyst. Applied Catalysis B: Environmental, 2009, 89, 659-664.	10.8	40
93	Experimental Study of a Fuel-Rich Premixed Toluene Flame at Low Pressure. Energy & Fuels, 2009, 23, 1473-1485.	2.5	184
94	The Effects of MTBE/Ethanol Additives on Toxic Species Concentration in Gasoline Flame. Energy & Fuels, 2009, 23, 3543-3548.	2.5	32
95	Catalytic oxidation of hydrocarbons over Co3O4 catalyst prepared by CVD. Catalysis Communications, 2009, 11, 118-122.	1.6	53
96	An experimental study of premixed laminar methane/oxygen/argon flames doped with hydrogen at low pressure with synchrotron photoionization. Science Bulletin, 2008, 53, 1262-1269.	4.3	9
97	A comprehensive experimental study of low-pressure premixed C3-oxygenated hydrocarbon flames with tunable synchrotron photoionization. Combustion and Flame, 2008, 152, 336-359.	2.8	87
98	Identification of Combustion Intermediates in Low-Pressure Premixed Pyridine/Oxygen/Argon Flames. Journal of Physical Chemistry A, 2008, 112, 13549-13555.	1.1	31
99	Interstellar Enols Are Formed in Plasma Discharges of Alcohols. Astrophysical Journal, 2008, 676, 416-419.	1.6	32
100	Low temperature plasma diagnostics with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Review of Scientific Instruments, 2008, 79, 103504.	0.6	13
101	Identification and Chemistry of Phenylnitrene in Premixed Pyridine/Oxygen/Argon Flame with Tunable Synchrotron Photoionization. Chinese Journal of Chemical Physics, 2007, 20, 425-430.	0.6	8
102	Study on combustion of gasoline/MTBE in laminar flame with synchrotron radiation. Chemosphere, 2007, 67, 2065-2071.	4.2	11
103	An Experimental Study of Rich Premixed Gasoline/O2/Ar Flame with Tunable Synchrotron Vacuum Ultraviolet Photoionization. Energy & Fuels, 2007, 21, 1931-1941.	2.5	25
104	An experimental study of low-pressure premixed pyrrole/oxygen/argon flames with tunable synchrotron photoionization. Combustion and Flame, 2007, 151, 347-365.	2.8	52
105	The tunable VUV single-photon ionization mass spectrometry for the analysis of individual components in gasoline. International Journal of Mass Spectrometry, 2007, 263, 30-37.	0.7	36
106	An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization. Proceedings of the Combustion Institute, 2007, 31, 555-563.	2.4	131
107	Identifying combustion intermediates in premixed MTBE/gasoline/oxygen flame probed via synchrotron radiation. Frontiers of Energy and Power Engineering in China, 2007, 1, 79-84.	0.4	0
108	Identification of combustion intermediates in isomeric fuel-rich premixed butanol–oxygen flames at Iow pressure. Combustion and Flame, 2007, 148, 198-209.	2.8	189

#	Article	IF	CITATIONS
109	Experimental Study of Premixed Stoichiometric Ethylene/Oxygen/Argon Flame. Chinese Journal of Chemical Physics, 2006, 19, 379-385.	0.6	5