Arpita Upadhyaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7897556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A microfabricated array bioreactor for perfused 3D liver culture. Biotechnology and Bioengineering, 2002, 78, 257-269.	3.3	441
2	Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates. Physica A: Statistical Mechanics and Its Applications, 2001, 293, 549-558.	2.6	228
3	Probing polymerization forces by using actin-propelled lipid vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4521-4526.	7.1	176
4	Cytoskeletal forces during signaling activation in Jurkat T-cells. Molecular Biology of the Cell, 2015, 26, 685-695.	2.1	145
5	Tension in Tubulovesicular Networks of Golgi and Endoplasmic Reticulum Membranes. Biophysical Journal, 2004, 86, 2923-2928.	0.5	117
6	Rapid image deconvolution and multiview fusion for optical microscopy. Nature Biotechnology, 2020, 38, 1337-1346.	17.5	105
7	Diffusion and Deformations of Single Hydra Cells in Cellular Aggregates. Biophysical Journal, 2000, 79, 1903-1914.	0.5	103
8	Improving the realism of the cellular Potts model in simulations of biological cells. Physica A: Statistical Mechanics and Its Applications, 2003, 329, 451-458.	2.6	100
9	Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes. Nature Methods, 2021, 18, 678-687.	19.0	94
10	Transcriptional Bursting and Co-bursting Regulation by Steroid Hormone Release Pattern and Transcription Factor Mobility. Molecular Cell, 2019, 75, 1161-1177.e11.	9.7	86
11	An intrinsically disordered region-mediated confinement state contributes to the dynamics and function of transcription factors. Molecular Cell, 2021, 81, 1484-1498.e6.	9.7	83
12	The pivotal position of the actin cytoskeleton in the initiation and regulation of B cell receptor activation. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 569-578.	2.6	80
13	Mechanical Regulation of Transcription: Recent Advances. Trends in Cell Biology, 2021, 31, 457-472.	7.9	75
14	A Balance of Bruton's Tyrosine Kinase and SHIP Activation Regulates B Cell Receptor Cluster Formation by Controlling Actin Remodeling. Journal of Immunology, 2011, 187, 230-239.	0.8	70
15	Ligand Mobility Regulates B Cell Receptor Clustering and Signaling Activation. Biophysical Journal, 2014, 106, 26-36.	0.5	70
16	Dynamic microtubules regulate cellular contractility during T-cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4175-E4183.	7.1	70
17	Power-law behavior of transcription factor dynamics at the single-molecule level implies a continuum affinity model. Nucleic Acids Research, 2021, 49, 6605-6620.	14.5	70
18	N-WASP Is Essential for the Negative Regulation of B Cell Receptor Signaling. PLoS Biology, 2013, 11, e1001704.	5.6	67

Arpita Upadhyaya

#	Article	IF	CITATIONS
19	Biomimetic Systems for Studying Actin-Based Motility. Current Biology, 2003, 13, R734-R744.	3.9	63
20	Actin Reorganization Is Required for the Formation of Polarized B Cell Receptor Signalosomes in Response to Both Soluble and Membrane-Associated Antigens. Journal of Immunology, 2012, 188, 3237-3246.	0.8	61
21	Single-shot super-resolution total internal reflection fluorescence microscopy. Nature Methods, 2018, 15, 425-428.	19.0	57
22	Reflective imaging improves spatiotemporal resolution and collection efficiency in light sheet microscopy. Nature Communications, 2017, 8, 1452.	12.8	41
23	Mechanosensing in the immune response. Seminars in Cell and Developmental Biology, 2017, 71, 137-145.	5.0	32
24	Remarkable structural transformations of actin bundles are driven by their initial polarity, motor activity, crosslinking, and filament treadmilling. PLoS Computational Biology, 2019, 15, e1007156.	3.2	32
25	Actin-binding protein 1 links B-cell antigen receptors to negative signaling pathways. Proceedings of the United States of America, 2014, 111, 9881-9886.	7.1	31
26	Membrane Dynamics Correlate with Formation of Signaling Clusters during Cell Spreading. Biophysical Journal, 2012, 102, 1524-1533.	0.5	30
27	Phase separation in transcription factor dynamics and chromatin organization. Current Opinion in Structural Biology, 2021, 71, 148-155.	5.7	30
28	Elastic Instability in Growing Yeast Colonies. Biophysical Journal, 2004, 86, 2740-2747.	0.5	28
29	Actinâ€mediated feedback loops in Bâ€cell receptor signaling. Immunological Reviews, 2013, 256, 177-189.	6.0	27
30	WASP family proteins regulate the mobility of the B cell receptor during signaling activation. Nature Communications, 2020, 11, 439.	12.8	27
31	Subcellular topography modulates actin dynamics and signaling in B-cells. Molecular Biology of the Cell, 2018, 29, 1732-1742.	2.1	26
32	Analyzing actin dynamics during the activation of the B cell receptor in live B cells. Biochemical and Biophysical Research Communications, 2012, 427, 202-206.	2.1	19
33	The actin crosslinking protein palladin modulates force generation and mechanosensitivity of tumor associated fibroblasts. Scientific Reports, 2016, 6, 28805.	3.3	18
34	The glucocorticoid receptor associates with the cohesin loader NIPBL to promote long-range gene regulation. Science Advances, 2022, 8, eabj8360.	10.3	18
35	The actin cytoskeleton coordinates the signal transduction and antigen processing functions of the B cell antigen receptor. Frontiers in Biology, 2013, 8, 475-485.	0.7	13
36	Actin Polymerization: Forcing Flat Faces Forward. Current Biology, 2004, 14, R467-R469.	3.9	11

ARPITA UPADHYAYA

#	Article	IF	CITATIONS
37	Bidirectional feedback between BCR signaling and actin cytoskeletal dynamics. FEBS Journal, 2022, 289, 4430-4446.	4.7	8
38	Biophysical Techniques to Study B Cell Activation: Single-Molecule Imaging and Force Measurements. Methods in Molecular Biology, 2018, 1707, 51-68.	0.9	6
39	Bcl10 is associated with actin dynamics at the T cell immune synapse. Cellular Immunology, 2020, 356, 104161.	3.0	6
40	Non-Muscle Myosin II Is Essential for the Negative Regulation of B-Cell Receptor Signaling and B-Cell Activation. Frontiers in Immunology, 2022, 13, 842605.	4.8	5
41	WASp Is Crucial for the Unique Architecture of the Immunological Synapse in Germinal Center B-Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 646077.	3.7	3
42	Increased Expression of Cytoskeleton Coordinator Protein MACF1 at the Immune Synapse during Jurkat T Cell Activation. Blood, 2020, 136, 28-29.	1.4	1