
Jian-Ping Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7896776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biphase Stratification Approach to Three-Dimensional Dendritic Biodegradable Mesoporous Silica Nanospheres. Nano Letters, 2014, 14, 923-932.	4.5	639
2	Enhanced Sodium-Ion Battery Performance by Structural Phase Transition from Two-Dimensional Hexagonal-SnS ₂ to Orthorhombic-SnS. ACS Nano, 2014, 8, 8323-8333.	7.3	592
3	Recent progress on sodium ion batteries: potential high-performance anodes. Energy and Environmental Science, 2018, 11, 2310-2340.	15.6	561
4	Simple and Green Synthesis of Nitrogenâ€Doped Photoluminescent Carbonaceous Nanospheres for Bioimaging. Angewandte Chemie - International Edition, 2013, 52, 8151-8155.	7.2	430
5	A Versatile Kinetics-Controlled Coating Method To Construct Uniform Porous TiO ₂ Shells for Multifunctional Core–Shell Structures. Journal of the American Chemical Society, 2012, 134, 11864-11867.	6.6	403
6	Uniform yolk-shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries. Nature Communications, 2015, 6, 8689.	5.8	374
7	Heterogeneous Singleâ€Atom Catalysts for Electrochemical CO ₂ Reduction Reaction. Advanced Materials, 2020, 32, e2001848.	11.1	366
8	Surface and Interface Engineering of Siliconâ€Based Anode Materials for Lithiumâ€lon Batteries. Advanced Energy Materials, 2017, 7, 1701083.	10.2	354
9	Sol–Gel Design Strategy for Ultradispersed TiO ₂ Nanoparticles on Graphene for High-Performance Lithium Ion Batteries. Journal of the American Chemical Society, 2013, 135, 18300-18303.	6.6	348
10	Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Research, 2010, 3, 632-642.	5.8	347
11	Amorphous TiO ₂ Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for Highâ€Performance and Safe Lithium Storage. Advanced Materials, 2017, 29, 1700523.	11.1	342
12	Electrocatalytic reduction of nitrate – a step towards a sustainable nitrogen cycle. Chemical Society Reviews, 2022, 51, 2710-2758.	18.7	323
13	Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nature Communications, 2018, 9, 4082.	5.8	305
14	Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon, 2011, 49, 1248-1257.	5.4	302
15	Spatially Confined Fabrication of Core–Shell Gold Nanocages@Mesoporous Silica for Near-Infrared Controlled Photothermal Drug Release. Chemistry of Materials, 2013, 25, 3030-3037.	3.2	302
16	Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties. Nano Letters, 2012, 12, 2852-2858.	4.5	287
17	Achieving High-Performance Room-Temperature Sodium–Sulfur Batteries With S@Interconnected Mesoporous Carbon Hollow Nanospheres. Journal of the American Chemical Society, 2016, 138, 16576-16579.	6.6	280
18	Hydrothermal Etching Assisted Crystallization: A Facile Route to Functional Yolk-Shell Titanate Microspheres with Ultrathin Nanosheets-Assembled Double Shells. Journal of the American Chemical Society, 2011, 133, 15830-15833.	6.6	278

#	Article	IF	CITATIONS
19	Successive Layer-by-Layer Strategy for Multi-Shell Epitaxial Growth: Shell Thickness and Doping Position Dependence in Upconverting Optical Properties. Chemistry of Materials, 2013, 25, 106-112.	3.2	277
20	General Strategy to Synthesize Uniform Mesoporous TiO ₂ /Graphene/Mesoporous TiO ₂ Sandwich-Like Nanosheets for Highly Reversible Lithium Storage. Nano Letters, 2015, 15, 2186-2193.	4.5	273
21	Highly Reversible and Large Lithium Storage in Mesoporous Si/C Nanocomposite Anodes with Silicon Nanoparticles Embedded in a Carbon Framework. Advanced Materials, 2014, 26, 6749-6755.	11.1	260
22	Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy, 2015, 18, 133-142.	8.2	238
23	Silicon/Mesoporous Carbon/Crystalline TiO ₂ Nanoparticles for Highly Stable Lithium Storage. ACS Nano, 2016, 10, 10524-10532.	7.3	230
24	Engineering the Distribution of Carbon in Silicon Oxide Nanospheres at the Atomic Level for Highly Stable Anodes. Angewandte Chemie - International Edition, 2019, 58, 6669-6673.	7.2	209
25	Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes. Nano Energy, 2016, 27, 255-264.	8.2	204
26	Dualâ€Pore Mesoporous Carbon@Silica Composite Core–Shell Nanospheres for Multidrug Delivery. Angewandte Chemie - International Edition, 2014, 53, 5366-5370.	7.2	170
27	NIRâ€Triggered Release of Caged Nitric Oxide using Upconverting Nanostructured Materials. Small, 2012, 8, 3800-3805.	5.2	168
28	Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence. Chemical Communications, 2011, 47, 11618.	2.2	164
29	Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks. Nature Chemistry, 2016, 8, 171-178.	6.6	153
30	Tailoring the Assembly of Iron Nanoparticles in Carbon Microspheres toward High-Performance Electrocatalytic Denitrification. Nano Letters, 2019, 19, 5423-5430.	4.5	147
31	Monodisperse core-shell chitosan microcapsules for pH-responsive burst release of hydrophobic drugs. Soft Matter, 2011, 7, 4821.	1.2	146
32	Residual Chlorine Induced Cationic Active Species on a Porous Copper Electrocatalyst for Highly Stable Electrochemical CO ₂ Reduction to C ₂₊ . Angewandte Chemie - International Edition, 2021, 60, 11487-11493.	7.2	145
33	3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage. Scientific Reports, 2015, 5, 14229.	1.6	139
34	Janus nanoarchitectures: From structural design to catalytic applications. Nano Today, 2018, 22, 62-82.	6.2	137
35	Hollow-Carbon-Templated Few-Layered V ₅ S ₈ Nanosheets Enabling Ultrafast Potassium Storage and Long-Term Cycling. ACS Nano, 2019, 13, 7939-7948.	7.3	136
36	Controlled Synthesis and Functionalization of Ordered Largeâ€Pore Mesoporous Carbons. Advanced Functional Materials, 2010, 20, 3658-3665.	7.8	127

#	Article	IF	CITATIONS
37	Direct Superassemblies of Freestanding Metal–Carbon Frameworks Featuring Reversible Crystalline-Phase Transformation for Electrochemical Sodium Storage. Journal of the American Chemical Society, 2016, 138, 16533-16541.	6.6	120
38	Ultradispersed Palladium Nanoparticles in Three-Dimensional Dendritic Mesoporous Silica Nanospheres: Toward Active and Stable Heterogeneous Catalysts. ACS Applied Materials & Interfaces, 2015, 7, 17450-17459.	4.0	110
39	Mesoporous Silica Encapsulating Upconversion Luminescence Rare-Earth Fluoride Nanorods for Secondary Excitation. Langmuir, 2010, 26, 8850-8856.	1.6	105
40	Synthesis of ordered mesoporous alumina with large pore sizes and hierarchical structure. Microporous and Mesoporous Materials, 2011, 143, 406-412.	2.2	100
41	MoO2/Mo2C/C spheres as anode materials for lithium ion batteries. Carbon, 2016, 96, 1200-1207.	5.4	96
42	Fe/Fe ₃ C nanoparticle-decorated N-doped carbon nanofibers for improving the nitrogen selectivity of electrocatalytic nitrate reduction. Journal of Materials Chemistry A, 2020, 8, 15853-15863.	5.2	96
43	How to Build a Microplasticsâ€Free Environment: Strategies for Microplastics Degradation and Plastics Recycling. Advanced Science, 2022, 9, e2103764.	5.6	87
44	Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Research, 2015, 8, 2503-2514.	5.8	84
45	Hierarchical Branched Mesoporous TiO ₂ –SnO ₂ Nanocomposites with Wellâ€Defined n–n Heterojunctions for Highly Efficient Ethanol Sensing. Advanced Science, 2019, 6, 1902008.	5.6	84
46	Direct triblock-copolymer-templating synthesis of ordered nitrogen-containing mesoporous polymers. Journal of Colloid and Interface Science, 2010, 342, 579-585.	5.0	83
47	Boosting the initial coulombic efficiency in silicon anodes through interfacial incorporation of metal nanocrystals. Journal of Materials Chemistry A, 2019, 7, 17426-17434.	5.2	83
48	Boron doping-induced interconnected assembly approach for mesoporous silicon oxycarbide architecture. National Science Review, 2021, 8, nwaa152.	4.6	77
49	Synthesis of well-dispersed layered double hydroxide core@ordered mesoporous silica shell nanostructure (LDH@mSiO2) and its application in drug delivery. Nanoscale, 2011, 3, 4069.	2.8	74
50	Dendritic Cellâ€Inspired Designed Architectures toward Highly Efficient Electrocatalysts for Nitrate Reduction Reaction. Small, 2020, 16, e2001775.	5.2	74
51	Nanostructured binary copper chalcogenides: synthesis strategies and common applications. Nanoscale, 2018, 10, 15130-15163.	2.8	73
52	Germanium Nanograin Decoration on Carbon Shell: Boosting Lithiumâ€ S torage Properties of Silicon Nanoparticles. Advanced Functional Materials, 2016, 26, 7800-7806.	7.8	68
53	Mesoporous Silicaâ€Coated Plasmonic Nanostructures for Surfaceâ€Enhanced Raman Scattering Detection and Photothermal Therapy. Advanced Healthcare Materials, 2014, 3, 1620-1628.	3.9	65
54	Toward understanding the interaction within Silicon-based anodes for stable lithium storage. Chemical Engineering Journal, 2020, 385, 123821.	6.6	65

#	Article	IF	CITATIONS
55	Efficient Photocatalytic Degradation of the Persistent PET Fiber-Based Microplastics over Pt Nanoparticles Decorated N-Doped TiO2 Nanoflowers. Advanced Fiber Materials, 2022, 4, 1094-1107.	7.9	65
56	Electrically Conductive and Mechanically Strong Graphene/Mullite Ceramic Composites for High-Performance Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 39245-39256.	4.0	64
57	A versatile designed synthesis of magnetically separable nano-catalysts with well-defined core–shell nanostructures. Journal of Materials Chemistry A, 2014, 2, 6071-6074.	5.2	63
58	Nanoscale zero-valent iron in mesoporous carbon (nZVI@C): stable nanoparticles for metal extraction and catalysis. Journal of Materials Chemistry A, 2017, 5, 4478-4485.	5.2	62
59	One‣tep Hydrothermal Synthesis of Carboxylâ€Functionalized Upconversion Phosphors for Bioapplications. Chemistry - A European Journal, 2012, 18, 13642-13650.	1.7	61
60	Silicon: toward eco-friendly reduction techniques for lithium-ion battery applications. Journal of Materials Chemistry A, 2019, 7, 24715-24737.	5.2	61
61	Highly Ordered Dual Porosity Mesoporous Cobalt Oxide for Sodiumâ€ion Batteries. Advanced Materials Interfaces, 2016, 3, 1500464.	1.9	60
62	Sub-nanometric Manganous Oxide Clusters in Nitrogen Doped Mesoporous Carbon Nanosheets for High-Performance Lithium–Sulfur Batteries. Nano Letters, 2021, 21, 700-708.	4.5	60
63	Aqueous preparation of surfactant-free copper selenide nanowires. Journal of Colloid and Interface Science, 2015, 442, 140-146.	5.0	58
64	Achieving high-performance nitrate electrocatalysis with PdCu nanoparticles confined in nitrogen-doped carbon coralline. Nanoscale, 2018, 10, 19023-19030.	2.8	57
65	Bimetallic PdCu Nanocrystals Immobilized by Nitrogen-Containing Ordered Mesoporous Carbon for Electrocatalytic Denitrification. ACS Applied Materials & Interfaces, 2019, 11, 3861-3868.	4.0	57
66	When Silicon Materials Meet Natural Sources: Opportunities and Challenges for Low ost Lithium Storage. Small, 2021, 17, e1904508.	5.2	56
67	Synthesis of freestanding PEDOT:PSS/PVA@Ag NPs nanofiber film for high-performance flexible thermoelectric generator. Polymer, 2019, 167, 102-108.	1.8	55
68	Thin Film Thermoelectric Materials: Classification, Characterization, and Potential for Wearable Applications. Coatings, 2018, 8, 244.	1.2	54
69	Modulating the Electronic Structure of FeCo Nanoparticles in Nâ€Doped Mesoporous Carbon for Efficient Oxygen Reduction Reaction. Advanced Science, 2022, 9, e2200394.	5.6	52
70	Interface-Amorphized Ti ₃ C ₂ @Si/SiO <i>_x</i> @TiO ₂ Anodes with Sandwiched Structures and Stable Lithium Storage. ACS Applied Materials & Interfaces, 2020, 12, 24796-24805.	4.0	51
71	Conversion of Catalytically Inert 2D Bismuth Oxide Nanosheets for Effective Electrochemical Hydrogen Evolution Reaction Catalysis via Oxygen Vacancy Concentration Modulation. Nano-Micro Letters, 2022, 14, 90.	14.4	51
72	Boron heteroatom-doped silicon–carbon peanut-like composites enables long life lithium-ion batteries. Rare Metals, 2022, 41, 1276-1283.	3.6	50

#	Article	IF	CITATIONS
73	Mesoporous Materials–Based Electrochemical Biosensors from Enzymatic to Nonenzymatic. Small, 2021, 17, e1904022.	5.2	49
74	Fiber Materials for Electrocatalysis Applications. Advanced Fiber Materials, 2022, 4, 720-735.	7.9	48
75	Carbon-Encapsulated Copper Sulfide Leading to Enhanced Thermoelectric Properties. ACS Applied Materials & Interfaces, 2019, 11, 22457-22463.	4.0	45
76	Mesoporous carbon confined palladium–copper alloy composites for high performance nitrogen selective nitrate reduction electrocatalysis. New Journal of Chemistry, 2017, 41, 2349-2357.	1.4	44
77	Photosensitizer Nanodot Eliciting Immunogenicity for Photoâ€Immunologic Therapy of Postoperative Methicillinâ€Resistant <i>Staphylococcus aureus</i> Infection and Secondary Recurrence. Advanced Materials, 2022, 34, e2107300.	11.1	44
78	Facile preparation of Cu–Mn/CeO2/SBA-15 catalysts using ceria as an auxiliary for advanced oxidation processes. Journal of Materials Chemistry A, 2014, 2, 10654.	5.2	42
79	Large pore mesostructured cellular silica foam coated magnetic oxide composites with multilamellar vesicle shells for adsorption. Chemical Communications, 2014, 50, 713-715.	2.2	40
80	Boron-iron nanochains for selective electrocatalytic reduction of nitrate. Chinese Chemical Letters, 2021, 32, 2073-2078.	4.8	39
81	A curing agent method to synthesize ordered mesoporous carbons from linear novolac phenolic resin polymers. Journal of Materials Chemistry, 2009, 19, 6536.	6.7	38
82	Bowl-like mesoporous polymer-induced interface growth of molybdenum disulfide for stable lithium storage. Chemical Engineering Journal, 2020, 381, 122651.	6.6	37
83	Pushing the Limit of Ordered Mesoporous Materials via 2D Selfâ€Assembly for Energy Conversion and Storage. Advanced Functional Materials, 2021, 31, 2007496.	7.8	36
84	A Universal Singleâ€Atom Coating Strategy Based on Tannic Acid Chemistry for Multifunctional Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
85	Controllable fabrication of dendritic mesoporous silica–carbon nanospheres for anthracene removal. Journal of Materials Chemistry A, 2014, 2, 11045.	5.2	33
86	Facile synthesis of mesoporous WO3@graphene aerogel nanocomposites for low-temperature acetone sensing. Chinese Chemical Letters, 2019, 30, 2032-2038.	4.8	33
87	Multiscale architectures boosting thermoelectric performance of copper sulfide compound. Rare Metals, 2021, 40, 2017-2025.	3.6	33
88	Phenyl-functionalized mesoporous silica materials for the rapid and efficient removal of phthalate esters. Journal of Colloid and Interface Science, 2017, 487, 354-359.	5.0	32
89	Mesoporous WO3 Nanofibers With Crystalline Framework for High-Performance Acetone Sensing. Frontiers in Chemistry, 2019, 7, 266.	1.8	32
90	Cobalt-Based Metal-Organic Frameworks and Their Derivatives for Hydrogen Evolution Reaction. Frontiers in Chemistry, 2020, 8, 592915.	1.8	32

#	Article	IF	CITATIONS
91	Organic/Inorganic Hybrid Fibers: Controllable Architectures for Electrochemical Energy Applications. Advanced Science, 2021, 8, e2102859.	5.6	32
92	A Highâ€Rate Electrode with Grotthuss Topochemistry for Membraneâ€Free Decoupled Acid Water Electrolysis. Advanced Energy Materials, 2021, 11, 2102057.	10.2	31
93	Branched Artificial Nanofinger Arrays by Mesoporous Interfacial Atomic Rearrangement. Journal of the American Chemical Society, 2015, 137, 4260-4266.	6.6	30
94	Bone infection site targeting nanoparticle-antibiotics delivery vehicle to enhance treatment efficacy of orthopedic implant related infection. Bioactive Materials, 2022, 16, 134-148.	8.6	30
95	Feasible Degradation of Polyethylene Terephthalate Fiberâ€Based Microplastics in Alkaline Media with Bi ₂ O ₃ @Nâ€TiO ₂ Zâ€5cheme Photocatalytic System. Advanced Sustainable Systems, 2022, 6, .	2.7	30
96	Encapsulation of core–satellite silicon in carbon for rational balance of the void space and capacity. Chemical Communications, 2019, 55, 10531-10534.	2.2	29
97	Achieving effective broadband microwave absorption with Fe3O4@C supraparticles. Journal of Materiomics, 2021, 7, 80-88.	2.8	29
98	Ordered mesoporous silica/polyvinylidene fluoride composite membranes for effective removal of water contaminants. Journal of Materials Chemistry A, 2016, 4, 3850-3857.	5.2	28
99	Hierarchical ordered macro/mesoporous titania with a highly interconnected porous structure for efficient photocatalysis. Journal of Materials Chemistry A, 2016, 4, 16446-16453.	5.2	27
100	A confined micro-reactor with a movable Fe3O4 core and a mesoporous TiO2 shell for a photocatalytic Fenton-like degradation of bisphenol A. Chinese Chemical Letters, 2021, 32, 1456-1461.	4.8	27
101	Facile Fabrication of Dendritic Mesoporous SiO ₂ @CdTe@SiO ₂ Fluorescent Nanoparticles for Bioimaging. Particle and Particle Systems Characterization, 2016, 33, 261-270.	1.2	26
102	Surface Anchoring Approach for Growth of CeO ₂ Nanocrystals on Prussian Blue Capsules Enable Superior Lithium Storage. ACS Applied Materials & Interfaces, 2019, 11, 33082-33090.	4.0	25
103	TiO ₂ interpenetrating networks decorated with SnO ₂ nanocrystals: enhanced activity of selective catalytic reduction of NO with NH ₃ . Journal of Materials Chemistry A, 2015, 3, 1405-1409.	5.2	24
104	Big Potential From Silicon-Based Porous Nanomaterials: In Field of Energy Storage and Sensors. Frontiers in Chemistry, 2018, 6, 539.	1.8	24
105	Iron nanoparticles in capsules: derived from mesoporous silica-protected Prussian blue microcubes for efficient selenium removal. Chemical Communications, 2018, 54, 5887-5890.	2.2	24
106	Interface Heteroatomâ€doping: Emerging Solutions to Siliconâ€based Anodes. Chemistry - an Asian Journal, 2020, 15, 1394-1404.	1.7	24
107	Biodegradation and catalytic-chemical degradation strategies to mitigate microplastic pollution. Sustainable Materials and Technologies, 2021, 28, e00251.	1.7	24
108	Multiâ€Mode Antibacterial Strategies Enabled by Geneâ€Transfection and Immunomodulatory Nanoparticles in 3Dâ€Printed Scaffolds for Synergistic Exogenous and Endogenous Treatment of Infections. Advanced Materials, 2022, 34, e2200096.	11.1	24

#	Article	IF	CITATIONS
109	Preparation of a mesoporous Cu–Mn/TiO ₂ composite for the degradation of Acid Red 1. Journal of Materials Chemistry A, 2015, 3, 7399-7405.	5.2	23
110	Exposed metal oxide active sites on mesoporous titania channels: a promising design for low-temperature selective catalytic reduction of NO with NH ₃ . Chemical Communications, 2018, 54, 3783-3786.	2.2	23
111	Ordered Mesoporous Carbonaceous Materials with Tunable Surface Property for Enrichment of Hexachlorobenzene. Langmuir, 2016, 32, 9922-9929.	1.6	21
112	Boosting the electrocatalysis of nitrate to nitrogen with iron nanoparticles embedded in carbon microspheres. Chemical Communications, 2020, 56, 14685-14688.	2.2	21
113	Boosting initial coulombic efficiency of Si-based anodes: a review. Emergent Materials, 2020, 3, 369-380.	3.2	21
114	Regulating the carbon distribution of anode materials in lithium-ion batteries. Nanoscale, 2021, 13, 3937-3947.	2.8	21
115	Synergy between copper and iron sites inside carbon nanofibers for superior electrocatalytic denitrification. Nanoscale, 2021, 13, 10108-10115.	2.8	20
116	Facile synthesis of highly stable and well-dispersed mesoporous ZrO2/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene. Physical Chemistry Chemical Physics, 2010, 12, 10996.	1.3	19
117	Boric acid assisted formation of mesostructured silica: from hollow spheres to hierarchical assembly. RSC Advances, 2014, 4, 20069-20076.	1.7	19
118	Spatially Confined Tuning the Interfacial Synergistic Catalysis in Mesochannels toward Selective Catalytic Reduction. ACS Applied Materials & amp; Interfaces, 2019, 11, 19242-19251.	4.0	19
119	Hydrothermal Synthesis and Photoluminescence of Hierarchical Lead Tungstate Superstructures: Effects of Reaction Temperature and Surfactants. European Journal of Inorganic Chemistry, 2010, 2010, 1736-1742.	1.0	18
120	A versatile in situ etching-growth strategy for synthesis of yolk–shell structured periodic mesoporous organosilica nanocomposites. RSC Advances, 2016, 6, 51470-51479.	1.7	16
121	Engineering the Distribution of Carbon in Silicon Oxide Nanospheres at the Atomic Level for Highly Stable Anodes. Angewandte Chemie, 2019, 131, 6741-6745.	1.6	16
122	Porous arbon onfined Formation of Monodisperse Iron Nanoparticle Yolks toward Versatile Nanoreactors for Metal Extraction. Chemistry - A European Journal, 2018, 24, 15663-15668.	1.7	15
123	Spatially Nanoconfined Architectures: A Promising Design for Selective Catalytic Reduction of NO _x . ChemCatChem, 2020, 12, 5599-5610.	1.8	15
124	Confined interfacial micelle aggregating assembly of ordered macro–mesoporous tungsten oxides for H ₂ S sensing. Nanoscale, 2020, 12, 20811-20819.	2.8	15
125	Flexible electrocatalysts: interfacial-assembly of iron nanoparticles for nitrate reduction. Chemical Communications, 2021, 57, 6740-6743.	2.2	15
126	Residual Chlorine Induced Cationic Active Species on a Porous Copper Electrocatalyst for Highly Stable Electrochemical CO 2 Reduction to C 2+. Angewandte Chemie, 2021, 133, 11588-11594.	1.6	15

#	Article	IF	CITATIONS
127	Dianhydride-based polyimide as organic electrode materials for aqueous hydronium-ion battery. Electrochimica Acta, 2022, 403, 139550.	2.6	15
128	Engineering Carbon Distribution in Siliconâ€Based Anodes at Multiple Scales. Chemistry - A European Journal, 2020, 26, 1488-1496.	1.7	14
129	Comparison of Additives in Anode: The Case of Graphene, MXene, CNTs Integration with Silicon Inside Carbon Nanofibers. Acta Metallurgica Sinica (English Letters), 2021, 34, 337-346.	1.5	14
130	Site-selective exposure of iron nanoparticles to achieve rapid interface enrichment for heavy metals. Chemical Communications, 2020, 56, 2795-2798.	2.2	13
131	Nearâ€Infraredâ€Lightâ€Induced Fast Drug Release Platform: Mesoporous Silicaâ€Coated Gold Nanoframes for Thermochemotherapy. Particle and Particle Systems Characterization, 2016, 33, 316-322.	1.2	12
132	Interfacial engineering of core-shell structured mesoporous architectures from single-micelle building blocks. Nano Today, 2020, 35, 100940.	6.2	12
133	Enhancing the thermoelectric performance of filled skutterudite nanocomposites in a wide temperature range via electroless silver plating. Scripta Materialia, 2018, 146, 136-141.	2.6	11
134	Regulating ambient pressure approach to graphitic carbon nitride towards dispersive layers and rich pyridinic nitrogen. Chinese Chemical Letters, 2020, 31, 1603-1607.	4.8	10
135	Phase engineering of dual active 2D Bi ₂ O ₃ -based nanocatalysts for alkaline hydrogen evolution reaction electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 808-817.	5.2	10
136	Confined self-assembly of SiOC nanospheres in graphene film to achieve cycle stability of lithium ion batteries. New Journal of Chemistry, 2022, 46, 6519-6527.	1.4	10
137	A Universal Singleâ€Atom Coating Strategy Based on Tannic Acid Chemistry for Multifunctional Heterogeneous Catalysis. Angewandte Chemie, 2022, 134, .	1.6	9
138	Iron Nanoparticles Confined in Periodic Mesoporous Organosilicon as Nanoreactors for Efficient Nitrate Reduction. ACS Applied Nano Materials, 2022, 5, 5149-5157.	2.4	9
139	Lowâ€Dimensional Copper Selenide Nanostructures: Controllable Morphology and its Dependence on Electrocatalytic Performance. ChemElectroChem, 2019, 6, 574-580.	1.7	8
140	Regulating the interfacial behavior of carbon nanotubes for fast lithium storage. Electrochimica Acta, 2021, 388, 138591.	2.6	7
141	Oriented assembly of monomicelles in beam stream enabling bimodal mesoporous metal oxide nanofibers. Science China Materials, 2021, 64, 2486-2496.	3.5	6
142	Electrostatic Interactions Leading to Hierarchical Interpenetrating Electroconductive Networks in Silicon Anodes for Fast Lithium Storage. Chemistry - A European Journal, 2021, 27, 9320-9327.	1.7	6
143	Enhanced sequestration of large-sized dissolved organic micropollutants in polymeric membranes incorporated with mesoporous carbon. RSC Advances, 2016, 6, 81477-81484.	1.7	5
144	Polydopamine-Derived Carbon: What a Critical Role for Lithium Storage?. Frontiers in Energy Research, 2020, 8, .	1.2	5

#	Article	IF	CITATIONS
145	A triblock-copolymer-templating route to carbon spheres@SBA-15 large mesopore core–shell and hollow structures. RSC Advances, 2014, 4, 48676-48681.	1.7	4
146	Corncob Derived Porous Carbon Anode for Long-Term Cycling in Low-Cost Lithium Storage. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	4
147	Exploring Thermoelectric Property Improvement for Binary Copper Chalcogenides. Frontiers in Materials, 2020, 7, .	1.2	3
148	A carbon network strategy to synthesize silicon–carbon anodes toward regulated morphologies during molten salt reduction. CrystEngComm, 2020, 22, 4894-4902.	1.3	1
149	Frontispiece: Engineering Carbon Distribution in Siliconâ€Based Anodes at Multiple Scales. Chemistry - A European Journal, 2020, 26, .	1.7	1
150	Interface Design of Iron Nanoparticles for Environmental Remediation. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 561.	0.6	1
151	A Highâ€Rate Electrode with Grotthuss Topochemistry for Membraneâ€Free Decoupled Acid Water Electrolysis (Adv. Energy Mater. 40/2021). Advanced Energy Materials, 2021, 11, 2170159.	10.2	1
152	Nanoparticles: Germanium Nanograin Decoration on Carbon Shell: Boosting Lithium-Storage Properties of Silicon Nanoparticles (Adv. Funct. Mater. 43/2016). Advanced Functional Materials, 2016, 26, 7799-7799.	7.8	0