Erica Pensini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7896635/publications.pdf Version: 2024-02-01

FRICA DENSINI

#	Article	IF	CITATIONS
1	Demulsification Mechanism of Asphaltene-Stabilized Water-in-Oil Emulsions by a Polymeric Ethylene Oxide–Propylene Oxide Demulsifier. Energy & Fuels, 2014, 28, 6760-6771.	5.1	178
2	Asphaltene Subfractions Responsible for Stabilizing Water-in-Crude Oil Emulsions. Part 1: Interfacial Behaviors. Energy & Fuels, 2014, 28, 6897-6904.	5.1	148
3	Deep learning and machine vision for food processing: A survey. Current Research in Food Science, 2021, 4, 233-249.	5.8	113
4	Fundamental Study of Emulsions Stabilized by Soft and Rigid Particles. Langmuir, 2015, 31, 6282-6288.	3.5	56
5	Interfacial Layer Properties of a Polyaromatic Compound and its Role in Stabilizing Water-in-Oil Emulsions. Langmuir, 2015, 31, 10382-10391.	3.5	41
6	Carboxymethyl cellulose binding to mineral substrates: Characterization by atomic force microscopy–based Force spectroscopy and quartz-crystal microbalance with dissipation monitoring. Journal of Colloid and Interface Science, 2013, 402, 58-67.	9.4	40
7	Fatty acid-asphaltene interactions at oil/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 168-177.	4.7	40
8	Studying demulsification mechanisms of water-in-crude oil emulsions using a modified thin liquid film technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 540, 215-223.	4.7	40
9	Forces of Interactions between Bare and Polymer-Coated Iron and Silica: Effect of pH, Ionic Strength, and Humic Acids. Environmental Science & Technology, 2012, 46, 13401-13408.	10.0	32
10	Colloid Transport in Porous Media: A Review of Classical Mechanisms and Emerging Topics. Transport in Porous Media, 2019, 130, 129-156.	2.6	26
11	Effect of humic acids on bitumen films at the oil-water interface and on emulsion stability: Potential implications for groundwater remediation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 544, 53-59.	4.7	24
12	Zein for hydrocarbon remediation: Emulsifier, trapping agent, or both?. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124456.	4.7	24
13	Forces of interaction between fresh iron particles and iron oxide (magnetite): Effect of water chemistry and polymer coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433, 104-110.	4.7	23
14	â€~Emulsion locks' for the containment of hydrocarbons during surfactant flushing. Journal of Environmental Sciences, 2020, 90, 98-109.	6.1	22
15	In situ trapping and treating of hexavalent chromium using scleroglucan-based fluids: A proof of concept. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 192-200.	4.7	18
16	Gelation on demand using switchable double emulsions: A potential strategy for the in situ immobilization of organic contaminants. Journal of Colloid and Interface Science, 2020, 562, 470-482.	9.4	17
17	Selective solvent filters for non-aqueous phase liquid separation from water. Scientific Reports, 2020, 10, 11931.	3.3	17
18	Effect of Water Chemistry and Aging on Iron—Mica Interaction Forces: Implications for Iron Particle Transport. Langmuir, 2012, 28, 10453-10463.	3.5	16

Erica Pensini

#	Article	IF	CITATIONS
19	Enhanced corrosion resistance of metal surfaces by film forming amines: A comparative study between cyclohexanamine and 2-(diethylamino)ethanolbased formulations. Water Resources and Industry, 2018, 20, 93-106.	3.9	15
20	Modulation of the Viscosity of Guar-Based Fracking Fluids Using Salts. Energy & Fuels, 2021, 35, 16007-16019.	5.1	15
21	Natural emulsion gels and lecithin-based sorbents: A potential treatment method for organic spills on surface waters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 574, 245-259.	4.7	13
22	Forces of interactions between iron and aluminum silicates: Effect of water chemistry and polymer coatings. Journal of Colloid and Interface Science, 2013, 411, 8-15.	9.4	12
23	Natural guar, xanthan and carboxymethyl-cellulose-based fluids: Potential use to trap and treat hexavalent chromium in the subsurface. Journal of Environmental Chemical Engineering, 2019, 7, 102807.	6.7	12
24	Phosphate removal from water using alginate/carboxymethylcellulose/aluminum beads and plaster of paris. Water Environment Research, 2020, 92, 1255-1267.	2.7	12
25	Mechanisms of solvent separation using sugars and sugar alcohols. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128707.	4.7	12
26	Cubic mesophases of self-assembled amphiphiles separate miscible solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129548.	4.7	12
27	Effect of Toluene and Hexane Sorption on the Rheology and Interfacial Properties of Lecithin-Based Emulsion Gels. Langmuir, 2020, 36, 1484-1495.	3.5	11
28	Adhesion-Shielding based synthesis of interfacially active magnetic Janus nanoparticles. Journal of Colloid and Interface Science, 2022, 607, 1741-1753.	9.4	11
29	Natural reusable calcium-rich adsorbent for the removal of phosphorus from water: proof of concept of a circular economy. Canadian Journal of Civil Engineering, 2019, 46, 458-461.	1.3	9
30	Chitosan-Based biogels: A potential approach to trap and bioremediate naphthalene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 605, 125374.	4.7	9
31	Rapid design and prototyping of microfluidic chips via computer numerical control micromilling and anisotropic shrinking of stressed polystyrene sheets. Microfluidics and Nanofluidics, 2021, 25, 1.	2.2	9
32	A â€~three in one' complexing agent enables copper desorption from polluted soil, its removal from groundwater and its detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126840.	4.7	9
33	Graphene-Alginate Fluids as Unconventional Electrodes for the Electrokinetic Remediation of Cr(VI). Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	8
34	Zein-Bonded Graphene and Biosurfactants Enable the Electrokinetic Clean-Up of Hydrocarbons. Langmuir, 2021, 37, 11153-11169.	3.5	8
35	Shear rheological properties of composite fluids and stability of particle suspensions: Potential implications for fracturing and environmental fluids. Canadian Journal of Chemical Engineering, 2019, 97, 2395-2407.	1.7	7
36	Oxidizing emulsifiers: Gelators for water in hydrocarbon reactive emulsions. Journal of Environmental Chemical Engineering, 2021, 9, 104998.	6.7	7

Erica Pensini

#	Article	IF	CITATIONS
37	<scp>Waterâ€repellent</scp> films from corn protein and tomato cutin. Journal of Applied Polymer Science, 2021, 138, 50831.	2.6	7
38	Removal of hexavalent chromium from water using hydrochar obtained with different types of feedstock. Canadian Journal of Civil Engineering, 2020, 47, 567-583.	1.3	6
39	Laccase-zein interactions at the air-water interface: Reactors on an air bubble and naphthalene removal from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125518.	4.7	6
40	Zein-Based Materials: Effect of Nanocarbon Inclusion and Potential Applications. Journal of Polymers and the Environment, 2021, 29, 637-646.	5.0	6
41	Effect of rheology and humic acids on the transport of environmental fluids: Potential implications for soil remediation revealed through microfluidics. Journal of Applied Polymer Science, 2020, 137, 48465.	2.6	5
42	Path-dependent rheology of carbon particle-hydroxyethylcellulose fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 126000.	4.7	5
43	Injectable cationic traps and sticky bacterial emulsifiers: A safe alliance during diesel bioremediation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126051.	4.7	5
44	A novel perspective on emulsion stabilization in steam crackers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516, 48-62.	4.7	4
45	Influence of substitution of various functional groups on inhibition efficiency of TEMPO analogues on styrene polymerization. Journal of Polymer Research, 2017, 24, 1.	2.4	4
46	Trypan blue removal from water with zein sorbents and laccase. SN Applied Sciences, 2021, 3, 29.	2.9	4
47	Alginate-Bentonite Clay Composite Porous Sorbents for Cu(II) and Zn(II) Removal from Water. Water, Air, and Soil Pollution, 2022, 233, 1.	2.4	4
48	Effect of salts and pH on the removal of perfluorooctanoic acid (PFOA) from aqueous solutions through precipitation and electroflocculation. Canadian Journal of Civil Engineering, 2019, 46, 881-886.	1.3	3
49	Separation of Cr(VI), acetonitrile, and tetrahydrofuran from water using reducing sugars and HCl. Water, Air, and Soil Pollution, 2022, 233, 1.	2.4	3
50	Vitamin B12 and Magnesium: a Healthy Combo for the Degradation of Trichloroethylene. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	2
51	Comparative study of corrosion inhibition by three anionic surfactants in an acidic environment. Journal of Surfactants and Detergents, 2022, 25, 399-411.	2.1	2
52	Effect of metal salts on highâ€voltage atmospheric cold plasmaâ€induced polymerization of acrylamide. Journal of Applied Polymer Science, 2022, 139, 52072.	2.6	0