Justin G Boyles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7896398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Economic Importance of Bats in Agriculture. Science, 2011, 332, 41-42.	6.0	599
2	Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature, 2011, 480, 376-378.	13.7	413
3	Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biology, 2010, 8, 135.	1.7	232
4	Temperature-Dependent Growth of Geomyces destructans, the Fungus That Causes Bat White-Nose Syndrome. PLoS ONE, 2012, 7, e46280.	1.1	218
5	Adaptive Thermoregulation in Endotherms May Alter Responses to Climate Change. Integrative and Comparative Biology, 2011, 51, 676-690.	0.9	196
6	Bats initiate vital agroecological interactions in corn. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12438-12443.	3.3	173
7	The evolution of thermal physiology in endotherms. Frontiers in Bioscience - Elite, 2010, E2, 861-881.	0.9	171
8	Energy availability influences microclimate selection of hibernating bats. Journal of Experimental Biology, 2007, 210, 4345-4350.	0.8	136
9	Stacking the odds: light pollution may shift the balance in an ancient predator–prey arms race. Journal of Applied Ecology, 2015, 52, 522-531.	1.9	115
10	Evaporative Water Loss Is a Plausible Explanation for Mortality of Bats from White-Nose Syndrome. Integrative and Comparative Biology, 2011, 51, 364-373.	0.9	110
11	Could localized warm areas inside cold caves reduce mortality of hibernating bats affected by whiteâ€nose syndrome?. Frontiers in Ecology and the Environment, 2010, 8, 92-98.	1.9	95
12	A global heterothermic continuum in mammals. Global Ecology and Biogeography, 2013, 22, 1029-1039.	2.7	88
13	A New Comparative Metric for Estimating Heterothermy in Endotherms. Physiological and Biochemical Zoology, 2011, 84, 115-123.	0.6	85
14	The Perils of Picky Eating: Dietary Breadth Is Related to Extinction Risk in Insectivorous Bats. PLoS ONE, 2007, 2, e672.	1.1	83
15	Thermal benefits of clustering during hibernation: a field test of competing hypotheses on <i>Myotis sodalis</i> . Functional Ecology, 2008, 22, 632-636.	1.7	80
16	Activity following arousal in winter in North American vespertilionid bats. Mammal Review, 2006, 36, 267-280.	2.2	71
17	Modeling Survival Rates of Hibernating Mammals with Individual-Based Models of Energy Expenditure. Journal of Mammalogy, 2009, 90, 9-16.	0.6	67
18	Optimal hibernation theory. Mammal Review, 2020, 50, 91-100.	2.2	64

JUSTIN G BOYLES

#	Article	IF	CITATIONS
19	Illuminating prey selection in an insectivorous bat community exposed to artificial light at night. Journal of Applied Ecology, 2018, 55, 705-713.	1.9	44
20	Energy conservation in hibernating endotherms: Why "suboptimal―temperatures are optimal. Ecological Modelling, 2010, 221, 1644-1647.	1.2	34
21	Does use of the torpor cut-off method to analyze variation in body temperature cause more problems than it solves?. Journal of Thermal Biology, 2011, 36, 373-375.	1.1	31
22	Physiological and behavioral adaptations in bats living at high latitudes. Physiology and Behavior, 2016, 165, 322-327.	1.0	25
23	Long-term microclimate measurements add further evidence that there is no "optimal―temperature for bat hibernation. Mammalian Biology, 2017, 86, 9-16.	0.8	23
24	Body temperature and body mass of hibernating little brown bats Myotis lucifugus in hibernacula affected by white-nose syndrome. Acta Theriologica, 2011, 56, 123-127.	1.1	22
25	Heterothermy in two moleâ€rat species subjected to interacting thermoregulatory challenges. Journal of Experimental Zoology, 2012, 317, 73-82.	1.2	22
26	Exogenous stress hormones alter energetic and nutrient costs of development and metamorphosis. Journal of Experimental Biology, 2017, 220, 3391-3397.	0.8	22
27	Illuminating the physiological implications of artificial light on an insectivorous bat community. Oecologia, 2019, 189, 69-77.	0.9	16
28	Body temperature patterns in two syntopic elephant shrew species during winter. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2012, 161, 89-94.	0.8	15
29	Benefits of knowing the costs of disturbance to hibernating bats. Wildlife Society Bulletin, 2017, 41, 388-392.	1.6	15
30	An experimental test of the allotonic frequency hypothesis to isolate the effects of light pollution on bat prey selection. Oecologia, 2019, 190, 367-374.	0.9	14
31	Community Physiological Ecology. Trends in Ecology and Evolution, 2019, 34, 510-518.	4.2	14
32	Testing traditional assumptions about regional migration in bats. Mammal Research, 2018, 63, 115-123.	0.6	13
33	Torpor Patterns in Desert Hedgehogs (<i>Paraechinus aethiopicus</i>) Represent Another New Point along a Thermoregulatory Continuum. Physiological and Biochemical Zoology, 2017, 90, 445-452.	0.6	11
34	Temperature alone is insufficient to understand hibernation energetics. Journal of Experimental Biology, 2021, 224, .	0.8	11
35	An oversimplification of physiological principles leads to flawed macroecological analyses. Ecology and Evolution, 2019, 9, 12020-12025.	0.8	10
36	Variation in body temperature is related to ambient temperature but not experimental manipulation of insulation in two small endotherms with different thermoregulatory patterns. Journal of Zoology, 2012, 287, 224-232.	0.8	9

JUSTIN G BOYLES

#	Article	IF	CITATIONS
37	The energetics of mosquito feeding by insectivorous bats. Canadian Journal of Zoology, 2018, 96, 373-377.	0.4	9
38	A novel framework for predicting the use of facultative heterothermy by endotherms. Journal of Theoretical Biology, 2013, 336, 242-245.	0.8	8
39	A Brief Introduction to Methods for Describing Body Temperature in Endotherms. Physiological and Biochemical Zoology, 2019, 92, 365-372.	0.6	8
40	Plant pathogens provide clues to the potential origin of bat white-nose syndrome <i>Pseudogymnoascus destructans</i> . Virulence, 2022, 13, 1020-1031.	1.8	6
41	Interruption to cutaneous gas exchange is not a likely mechanism of WNS-associated death in bats. Journal of Experimental Biology, 2015, 218, 1986-9.	0.8	5
42	Land cover influences dietary specialization of insectivorous bats globally. Mammal Research, 2015, 60, 343-351.	0.6	5
43	Energetics suggest cause for even further conservation concern for Temminck's ground pangolin. Animal Conservation, 2020, 23, 245-249.	1.5	4
44	The Winter Worries of Bats: Past and Present Perspectives on Winter Habitat and Management of Cave Hibernating Bats. Fascinating Life Sciences, 2021, , 209-221.	0.5	4
45	Experimental inoculation trial to determine the effects of temperature and humidity on White-nose Syndrome in hibernating bats. Scientific Reports, 2022, 12, 971.	1.6	4
46	Heterothermy as a mechanism to offset energetic costs of environmental and homeostatic perturbations. Scientific Reports, 2021, 11, 19038.	1.6	3
47	Behavioural microclimate selection and physiological responses to environmental conditions in a hibernating bat. Canadian Journal of Zoology, 2022, 100, 233-238.	0.4	3
48	High Body Temperature is an Unlikely Cause of High Viral Tolerance in Bats. Journal of Wildlife Diseases, 2021, 57, 238-241.	0.3	2
49	Body Temperature Frequency Distributions: A Tool for Assessing Thermal Performance in Endotherms?. Frontiers in Physiology, 2021, 12, 760797.	1.3	2
50	Testing the "Fasting While Foraging―Hypothesis: Effects of Recent Feeding on Plasma Metabolite Concentrations in Little Brown Bats (<i>Myotis lucifugus</i>). Physiological and Biochemical Zoology, 2019, 92, 373-380.	0.6	1
51	Concerns About Extrapolating Right Off the Bat—Response. Science, 2011, 333, 287-288.	6.0	0