Xiaozhe Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7896322/xiaozhe-zhang-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38	409	12	18
papers	citations	h-index	g-index
40	511	4	3.39
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
38	Design, Preparation, and Application of Magnetic Nanoparticles for Food Safety Analysis: A Review of Recent Advances <i>Journal of Agricultural and Food Chemistry</i> , 2021 ,	5.7	5
37	Computational exploration of natural peptides targeting ACE2. <i>Journal of Biomolecular Structure and Dynamics</i> , 2021 , 1-12	3.6	1
36	High sensitivity and specificity feature detection in liquid chromatography-mass spectrometry data: A deep learning framework. <i>Talanta</i> , 2021 , 222, 121580	6.2	1
35	Bidentatide, a Novel Plant Peptide Derived from Blume: Isolation, Characterization, and Neuroprotection through Inhibition of NR2B-Containing NMDA Receptors. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	1
34	EActive Pyrylium Salt 2,4,5-Triphenylpyrylium for Improved Mass Spectrometry-Based Detection of Peptides. <i>Analytical Chemistry</i> , 2021 , 93, 11072-11080	7.8	1
33	Plasma nontargeted peptidomics discovers potential biomarkers for major depressive disorder. <i>Proteomics - Clinical Applications</i> , 2021 , 15, e2000058	3.1	1
32	Untargeted Metabolomic Characterization of Ovarian Tumors. <i>Cancers</i> , 2020 , 12,	6.6	4
31	Alpha-Synuclein Dopaminylation Presented in Plasma of Both Healthy Subjects and Parkinsonla Disease Patients. <i>Proteomics - Clinical Applications</i> , 2020 , 14, e1900117	3.1	1
30	Discovery and validation of biomarkers for Zhongning goji berries using liquid chromatography mass spectrometry. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2020 , 1142, 122037	3.2	6
29	In situ derivatization of Au nanoclusters via aurophilic interactions of a triphenylphosphine gold(i) salt with neurotransmitters and their rapid MALDI-TOF-MS detection in mice brain tissue extracts. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 38-44	7.3	4
28	Peptides as Potential Biomarkers for Authentication of Mountain-Cultivated Ginseng and Cultivated Ginseng of Different Ages Using UPLC-HRMS. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 2263-2275	5.7	11
27	Quinetides: diverse posttranslational modified peptides of ribonuclease-like storage protein from as markers for differentiating ginseng species. <i>Journal of Ginseng Research</i> , 2020 , 44, 680-689	5.8	1
26	Measurement of ultra-trace level of intact oxytocin in plasma using SALLE combined with nano-LC-MS. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2019 , 173, 62-67	3.5	9
25	Preparative isolation of caffeoylquinic acid isomers from Kuding tea by salt-containing aqueous two-phase extraction and purification by high-speed countercurrent chromatography. <i>Separation Science Plus</i> , 2019 , 2, 170-177	1.1	
24	Various Multicharged Anions of Ginsenosides in Negative Electrospray Ionization with QTOF High-Resolution Mass Spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2019 , 30, 403-418	3.5	3
23	Rapid discrimination between red and white ginseng based on unique mass-spectrometric features. Journal of Pharmaceutical and Biomedical Analysis, 2019 , 164, 202-210	3.5	5
22	Extensive characterization and differential analysis of endogenous peptides from Bombyx batryticatus using mass spectrometric approach. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2019 , 163, 78-87	3.5	4

(2005-2018)

Potential biomarkers of Parkinson disease revealed by plasma metabolic profiling. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2018 , 1081-1082, 101-108	3.2	43
Stress Impacts the Regulation Neuropeptides in the Rat Hippocampus and Prefrontal Cortex. <i>Proteomics</i> , 2018 , 18, e1700408	4.8	18
Separation and identification of mouse brain tissue microproteins using top-down method with high resolution nanocapillary liquid chromatography mass spectrometry. <i>Proteomics</i> , 2017 , 17, 1600419	4.8	11
N-Butyl-4-hydroxy-1,8-naphthalimide: A new matrix for small molecule analysis by matrix-assisted laser desorption/ionization mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2017 , 31, 1779-1784	2.2	3
Extensive characterization of peptides from Panax ginseng C. A. Meyer using mass spectrometric approach. <i>Proteomics</i> , 2016 , 16, 2788-2791	4.8	12
Ultra-high performance liquid chromatography with linear ion trap-Orbitrap hybrid mass spectrometry combined with a systematic strategy based on fragment ions for the rapid separation and characterization of components in Stellera chamaejasme extracts. <i>Journal of Separation Science</i>	3.4	17
Polarity, selectivity and performance of hydrophilic organic/salt-containing aqueous two-phase system on counter-current chromatography for polar compounds. <i>Journal of Chromatography A</i> , 2016 , 1448, 49-57	4.5	6
High-Efficiency Recognition and Identification of Disulfide Bonded Peptides in Rat Neuropeptidome Using Targeted Electron Transfer Dissociation Tandem Mass Spectrometry. <i>Analytical Chemistry</i> , 2015 , 87, 11646-51	7.8	8
Rapid and sensitive analysis of parishin and its metabolites in rat plasma using ultra high performance liquid chromatography-fluorescence detection. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2014 , 973C, 104-109	3.2	15
Altered neurochemical levels in the rat brain following chronic nicotine treatment. <i>Journal of Chemical Neuroanatomy</i> , 2014 , 59-60, 29-35	3.2	8
A novel preparative liquid chromatograph for repetitive enrichment and purification of low-abundance compounds. <i>Journal of Chromatography A</i> , 2014 , 1351, 90-5	4.5	3
Isolation and characterization of two new phenolic acids from cultured cells of Saussurea involucrata. <i>Phytochemistry Letters</i> , 2014 , 7, 133-136	1.9	9
Extending the scope of neuropeptidomics in the mammalian brain. EuPA Open Proteomics, 2014, 3, 273-	-27.9	7
Neuropeptide alterations in the tree shrew hypothalamus during volatile anesthesia. <i>Journal of Proteomics</i> , 2013 , 80, 311-9	3.9	14
Chronic nicotine treatment impacts the regulation of opioid and non-opioid peptides in the rat dorsal striatum. <i>Molecular and Cellular Proteomics</i> , 2013 , 12, 1553-62	7.6	19
High identification rates of endogenous neuropeptides from mouse brain. <i>Journal of Proteome Research</i> , 2012 , 11, 2819-27	5.6	32
Extensive characterization of Tupaia belangeri neuropeptidome using an integrated mass spectrometric approach. <i>Journal of Proteome Research</i> , 2012 , 11, 886-96	5.6	25
Determination of Dissociation Constants of Strychnos Alkaloids from Strychnos nux-vomica L. by Capillary Electrophoresis. <i>Mikrochimica Acta</i> , 2005 , 150, 305-310	5.8	О
	Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1081-1082, 101-108. Stress Impacts the Regulation Neuropeptides in the Rat Hippocampus and Prefrontal Cortex. Proteomics, 2018, 18, e1700408 Separation and identification of mouse brain tissue microproteins using top-down method with high resolution nanocapillary liquid chromatography mass spectrometry. Proteomics, 2017, 17, 1600415 N-Butyl-4-hydroxy-1,8-naphthalimide: A new matrix for small molecule analysis by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2017, 31, 1779-1784 Extensive characterization of peptides from Panax ginseng C. A. Meyer using mass spectrometric approach. Proteomics, 2016, 16, 2788-2791 Ultra-high performance liquid chromatography with linear ion trap-Orbitrap hybrid mass spectrometry combined with a systematic strategy based on fragment ions for the rapid separation and characterization of components in Stellera chamaejasme extracts. Journal of Separation Science Polarity, selectivity and performance of hydrophilic organic/salt-containing aqueous two-phase system on counter-current chromatography for polar compounds. Journal of Chromatography A, 2016, 148, 49-57 High-Efficiency Recognition and Identification of Disulfide Bonded Peptides in Rat Neuropeptidome Using Targeted Electron Transfer Dissociation Tandem Mass Spectrometry. Analytical Chemistry, 2015, 87, 11646-51 Rapid and sensitive analysis of parishin and its metabolites in rat plasma using ultra high performance liquid chromatography-fluorescence detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 973. (104-109 Altered neurochemical levels in the rat brain following chronic nicotine treatment. Journal of Chemical Neuroanatomy, 2014, 59-60, 29-35 A novel preparative liquid chromatograph for repetitive enrichment and purification of low-abundance compounds. Journal of Proteome Research, 2013, 13, 180, 311-9 Extending the	Stress Impacts the Regulation Neuropeptides in the Biamedical and Life Sciences, 2018, 1081-1082, 101-108 ³² Stress Impacts the Regulation Neuropeptides in the Rat Hippocampus and Prefrontal Cortex. Proteomics, 2018, 18, e1700408 Separation and identification of mouse brain tissue microproteins using top-down method with high resolution nanocapillary liquid chromatography mass spectrometry. Proteomics, 2017, 17, 1600419 4-8 Neutyled Hydroxy-1,8-naphthalimide: A new matrix for small molecule analysis by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2017, 31, 1779-1784 Extensive characterization of peptides from Panax ginseng C. A. Meyer using mass spectrometry. 2017, 31, 1779-1784 Extensive characterization of peptides from Panax ginseng C. A. Meyer using mass spectrometry. 2017, 31, 1779-1784 Extensive characterization of peptides from Panax ginseng C. A. Meyer using mass spectrometry. 2017, 31, 1779-1784 Extensive characterization of peptides from Panax ginseng C. A. Meyer using mass spectrometry. 2011, 16, 2788-2791 Ultra-high performance liquid chromatography with linear ion trap-Orbitrap hybrid mass spectrometry with a systematic strategy based on fragment ions for the rapid separation and characterization of components in Stellera chamaejasme extracts. Journal of Separation Science Polarity, selectivity and performance of hydrophilic organic/salt-containing aqueous two-phase system on counter-current chromatography for polar compounds. Journal of Chromatography A, 2016, 148, 49-57 High-Efficiency Recognition and Identification of Disulfide Bonded Peptides in Rat Neuropeptidome Using Targeted Electron Transfer Dissociation Tandem Mass Spectrometry. Analytical Chemistry, 2015, 87, 11646-51 Rapid and sensitive analysis of parishin and its metabolites in rat plasma using ultra high performance liquid chromatography-fluorescence detection. Journal of Chromatography B: Analytical Technologies in the Biamedical and Life Sciences, 2014, 973C, 1

3	Direct characterization of bitter acids in a crude hop extract by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2004 , 15, 180-7	3.5	37
2	Iridoid glucosides from Strychnos nux-vomica. <i>Phytochemistry</i> , 2003 , 64, 1341-4	4	34
1	Characterization of phthalides in Ligusticum chuanxiong by liquid chromatographic-atmospheric pressure chemical ionization-mass spectrometry. <i>Journal of Chromatographic Science</i> , 2003 , 41, 428-33	1.4	29