Francisco J Lpez-Soriano

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7895823/francisco-j-lopez-soriano-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 173
 7,730
 53
 81

 papers
 citations
 h-index
 g-index

 178
 8,512
 5.8
 5.77

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
173	Lack of Synergy Between EAgonist Treatment and a Blockage of Sarcoplasmic Calcium Flow in a Rat Cancer Cachexia Model. <i>OncoTargets and Therapy</i> , 2021 , 14, 1953-1959	4.4	O
172	A small Cretaceous crocodyliform in a dinosaur nesting ground and the origin of sebecids. <i>Scientific Reports</i> , 2020 , 10, 15293	4.9	10
171	Differential structural features in soleus and gastrocnemius of carnitine-treated cancer cachectic rats. <i>Journal of Cellular Physiology</i> , 2020 , 235, 526-537	7	5
170	Mediators of cachexia in cancer patients. <i>Nutrition</i> , 2019 , 66, 11-15	4.8	32
169	The animal cachexia score (ACASCO). Animal Models and Experimental Medicine, 2019, 2, 201-209	4.2	3
168	Effects of the beta agonist formoterol on atrophy signaling, autophagy, and muscle phenotype in respiratory and limb muscles of rats with cancer-induced cachexia. <i>Biochimie</i> , 2018 , 149, 79-91	4.6	31
167	Inter-tissue communication in cancer cachexia. <i>Nature Reviews Endocrinology</i> , 2018 , 15, 9-20	15.2	97
166	Immobilization in diabetic rats results in altered glucose tolerance A model of reduced locomotion/activity in diabetes. <i>JCSM Rapid Communications</i> , 2018 , 1, 1-15	2.6	1
165	Omega-3 and omega-3/curcumin-enriched fruit juices decrease tumour growth and reduce muscle wasting in tumour-bearing mice. <i>JCSM Rapid Communications</i> , 2018 , 1, 1-10	2.6	2
164	Validation of the CAchexia SCOre (CASCO). Staging Cancer Patients: The Use of miniCASCO as a Simplified Tool. <i>Frontiers in Physiology</i> , 2017 , 8, 92	4.6	28
163	A Rat Immobilization Model Based on Cage Volume Reduction: A Physiological Model for Bed Rest?. <i>Frontiers in Physiology</i> , 2017 , 8, 184	4.6	11
162	Formoterol attenuates increased oxidative stress and myosin protein loss in respiratory and limb muscles of cancer cachectic rats. <i>PeerJ</i> , 2017 , 5, e4109	3.1	15
161	Complete reversal of muscle wasting in experimental cancer cachexia: Additive effects of activin type II receptor inhibition and E2 agonist. <i>International Journal of Cancer</i> , 2016 , 138, 2021-9	7.5	44
160	A multifactorial anti-cachectic approach for cancer cachexia in a rat model undergoing chemotherapy. <i>Journal of Cachexia, Sarcopenia and Muscle,</i> 2016 , 7, 48-59	10.3	37
159	Cachexia and sarcopenia: mechanisms and potential targets for intervention. <i>Current Opinion in Pharmacology</i> , 2015 , 22, 100-6	5.1	178
158	Muscle wasting in cancer: the role of mitochondria. <i>Current Opinion in Clinical Nutrition and Metabolic Care</i> , 2015 , 18, 221-5	3.8	46
157	Nonmuscle Tissues Contribution to Cancer Cachexia. <i>Mediators of Inflammation</i> , 2015 , 2015, 182872	4.3	36

156	Combination of exercise training and erythropoietin prevents cancer-induced muscle alterations. Oncotarget, 2015 , 6, 43202-15	3.3	63
155	A revision of the first Asteropyginae (Trilobita; Devonian). <i>Geobios</i> , 2014 , 47, 281-289	1.5	2
154	Cachexia: a problem of energetic inefficiency. Journal of Cachexia, Sarcopenia and Muscle, 2014, 5, 279-	86 0.3	56
153	Cancer cachexia: understanding the molecular basis. <i>Nature Reviews Cancer</i> , 2014 , 14, 754-62	31.3	662
152	Formoterol in the treatment of experimental cancer cachexia: effects on heart function. <i>Journal of Cachexia, Sarcopenia and Muscle</i> , 2014 , 5, 315-20	10.3	33
151	A differential pattern of gene expression in skeletal muscle of tumor-bearing rats reveals dysregulation of excitationEontraction coupling together with additional muscle alterations. Muscle and Nerve, 2014, 49, 233-48	3.4	11
150	Distinct behaviour of sorafenib in experimental cachexia-inducing tumours: the role of STAT3. <i>PLoS ONE</i> , 2014 , 9, e113931	3.7	22
149	Mitochondrial and sarcoplasmic reticulum abnormalities in cancer cachexia: altered energetic efficiency?. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2013 , 1830, 2770-8	4	70
148	Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model. <i>International Journal of Oncology</i> , 2013 , 43, 886-94	4.4	71
147	Erythropoietin administration partially prevents adipose tissue loss in experimental cancer cachexia models. <i>Journal of Lipid Research</i> , 2013 , 54, 3045-51	6.3	13
146	Myostatin: more than just a regulator of muscle mass. <i>Drug Discovery Today</i> , 2012 , 17, 702-9	8.8	85
145	Myostatin blockage using actRIIB antagonism in mice bearing the Lewis lung carcinoma results in the improvement of muscle wasting and physical performance. <i>Journal of Cachexia, Sarcopenia and Muscle</i> , 2012 , 3, 37-43	10.3	94
144	Megestrol acetate treatment influences tissue amino acid uptake and incorporation during cancer cachexia. <i>E-SPEN Journal</i> , 2012 , 7, e135-e138		3
143	Theophylline is able to partially revert cachexia in tumour-bearing rats. <i>Nutrition and Metabolism</i> , 2012 , 9, 76	4.6	13
142	L-Carnitine: an adequate supplement for a multi-targeted anti-wasting therapy in cancer. <i>Clinical Nutrition</i> , 2012 , 31, 889-95	5.9	29
141	Counteracting inflammation: a promising therapy in cachexia. <i>Critical Reviews in Oncogenesis</i> , 2012 , 17, 253-62	1.3	46
140	Are there any benefits of exercise training in cancer cachexia?. <i>Journal of Cachexia, Sarcopenia and Muscle,</i> 2012 , 3, 73-6	10.3	91
139	Formoterol treatment downregulates the myostatin system in skeletal muscle of cachectic tumour-bearing rats. <i>Oncology Letters</i> , 2012 , 3, 185-189	2.6	27

138	Formoterol and cancer muscle wasting in rats: Effects on muscle force and total physical activity. Experimental and Therapeutic Medicine, 2011 , 2, 731-735	2.1	13
137	Effects of eicosapentaenoic acid (EPA) treatment on insulin sensitivity in an animal model of diabetes: improvement of the inflammatory status. <i>Obesity</i> , 2011 , 19, 362-9	8	68
136	Nutraceutical inhibition of muscle proteolysis: a role of diallyl sulphide in the treatment of muscle wasting. <i>Clinical Nutrition</i> , 2011 , 30, 33-7	5.9	7
135	Anti-inflammatory therapies in cancer cachexia. <i>European Journal of Pharmacology</i> , 2011 , 668 Suppl 1, S81-6	5.3	55
134	Sirtuin 1 in skeletal muscle of cachectic tumour-bearing rats: a role in impaired regeneration?. <i>Journal of Cachexia, Sarcopenia and Muscle,</i> 2011 , 2, 57-62	10.3	21
133	The cachexia score (CASCO): a new tool for staging cachectic cancer patients. <i>Journal of Cachexia,</i> Sarcopenia and Muscle, 2011 , 2, 87-93	10.3	109
132	Combined approach to counteract experimental cancer cachexia: eicosapentaenoic acid and training exercise. <i>Journal of Cachexia, Sarcopenia and Muscle,</i> 2011 , 2, 95-104	10.3	63
131	Interleukin-15 affects differentiation and apoptosis in adipocytes: implications in obesity. <i>Lipids</i> , 2011 , 46, 1033-42	1.6	22
130	Effects of formoterol on protein metabolism in myotubes during hyperthermia. <i>Muscle and Nerve</i> , 2011 , 43, 268-73	3.4	5
129	Muscle Wasting in Cancer and Ageing: Cachexia Versus Sarcopenia 2011 , 9-35		1
129	Muscle Wasting in Cancer and Ageing: Cachexia Versus Sarcopenia 2011 , 9-35 Cancer cachexia: physical activity and muscle force in tumour-bearing rats. <i>Oncology Reports</i> , 2011 , 25, 189-93	3.5	31
	Cancer cachexia: physical activity and muscle force in tumour-bearing rats. <i>Oncology Reports</i> , 2011 ,	3.5	
128	Cancer cachexia: physical activity and muscle force in tumour-bearing rats. <i>Oncology Reports</i> , 2011 , 25, 189-93 Redox balance and carbonylated proteins in limb and heart muscles of cachectic rats. <i>Antioxidants</i>		31
128	Cancer cachexia: physical activity and muscle force in tumour-bearing rats. <i>Oncology Reports</i> , 2011 , 25, 189-93 Redox balance and carbonylated proteins in limb and heart muscles of cachectic rats. <i>Antioxidants and Redox Signaling</i> , 2010 , 12, 365-80 Megestrol acetate: its impact on muscle protein metabolism supports its use in cancer cachexia.	8.4	31 62
128 127 126	Cancer cachexia: physical activity and muscle force in tumour-bearing rats. <i>Oncology Reports</i> , 2011 , 25, 189-93 Redox balance and carbonylated proteins in limb and heart muscles of cachectic rats. <i>Antioxidants and Redox Signaling</i> , 2010 , 12, 365-80 Megestrol acetate: its impact on muscle protein metabolism supports its use in cancer cachexia. <i>Clinical Nutrition</i> , 2010 , 29, 733-7 Patterns of gene expression in muscle and fat in tumor-bearing rats: effects of CRF2R agonist on	8.4 5.9	31 62
128 127 126	Cancer cachexia: physical activity and muscle force in tumour-bearing rats. <i>Oncology Reports</i> , 2011 , 25, 189-93 Redox balance and carbonylated proteins in limb and heart muscles of cachectic rats. <i>Antioxidants and Redox Signaling</i> , 2010 , 12, 365-80 Megestrol acetate: its impact on muscle protein metabolism supports its use in cancer cachexia. <i>Clinical Nutrition</i> , 2010 , 29, 733-7 Patterns of gene expression in muscle and fat in tumor-bearing rats: effects of CRF2R agonist on cachexia. <i>Muscle and Nerve</i> , 2010 , 42, 936-49 Therapeutic potential of interleukin-15: a myokine involved in muscle wasting and adiposity. <i>Drug Discovery Today</i> , 2009 , 14, 208-13	8.4 5.9 3.4	31 62 21
128 127 126 125	Cancer cachexia: physical activity and muscle force in tumour-bearing rats. <i>Oncology Reports</i> , 2011 , 25, 189-93 Redox balance and carbonylated proteins in limb and heart muscles of cachectic rats. <i>Antioxidants and Redox Signaling</i> , 2010 , 12, 365-80 Megestrol acetate: its impact on muscle protein metabolism supports its use in cancer cachexia. <i>Clinical Nutrition</i> , 2010 , 29, 733-7 Patterns of gene expression in muscle and fat in tumor-bearing rats: effects of CRF2R agonist on cachexia. <i>Muscle and Nerve</i> , 2010 , 42, 936-49 Therapeutic potential of interleukin-15: a myokine involved in muscle wasting and adiposity. <i>Drug Discovery Today</i> , 2009 , 14, 208-13	8.4 5.9 3.4 8.8 3.8	31 62 21 4

(2006-2008)

120	Effects of IL-15 on rat brown adipose tissue: uncoupling proteins and PPARs. <i>Obesity</i> , 2008 , 16, 285-9	8	35
119	Novel approaches to the treatment of cachexia. <i>Drug Discovery Today</i> , 2008 , 13, 73-8	8.8	50
118	Apoptosis signalling is essential and precedes protein degradation in wasting skeletal muscle during catabolic conditions. <i>International Journal of Biochemistry and Cell Biology</i> , 2008 , 40, 1674-8	5.6	39
117	Effects of CRF2R agonist on tumor growth and cachexia in mice implanted with Lewis lung carcinoma cells. <i>Muscle and Nerve</i> , 2008 , 37, 190-5	3.4	17
116	Targets in clinical oncology: the metabolic environment of the patient. <i>Frontiers in Bioscience - Landmark</i> , 2007 , 12, 3024-51	2.8	15
115	Resveratrol does not ameliorate muscle wasting in different types of cancer cachexia models. <i>Clinical Nutrition</i> , 2007 , 26, 239-44	5.9	36
114	Apoptosis is present in skeletal muscle of cachectic gastro-intestinal cancer patients. <i>Clinical Nutrition</i> , 2007 , 26, 614-8	5.9	54
113	Antiproteolytic effects of plasma from hibernating bears: a new approach for muscle wasting therapy?. <i>Clinical Nutrition</i> , 2007 , 26, 658-61	5.9	22
112	Are peroxisome proliferator-activated receptors involved in skeletal muscle wasting during experimental cancer cachexia? Role of beta2-adrenergic agonists. <i>Cancer Research</i> , 2007 , 67, 6512-9	10.1	38
111	Mechanisms to explain wasting of muscle and fat in cancer cachexia. <i>Current Opinion in Supportive and Palliative Care</i> , 2007 , 1, 293-8	2.6	38
110	Resveratrol, a natural diphenol, reduces metastatic growth in an experimental cancer model. <i>Cancer Letters</i> , 2007 , 245, 144-8	9.9	60
109	Emerging drugs for cancer cachexia. Expert Opinion on Emerging Drugs, 2007, 12, 555-70	3.7	6
108	The AP-1/NF-kappaB double inhibitor SP100030 can revert muscle wasting during experimental cancer cachexia. <i>International Journal of Oncology</i> , 2007 , 30, 1239-45	1	14
107	Cytokines as mediators and targets for cancer cachexia. Cancer Treatment and Research, 2006, 130, 199	-3.157	44
106	IGF-1 is downregulated in experimental cancer cachexia. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2006 , 291, R674-83	3.2	124
105	Cancer Cachexia and Fat Metabolism 2006 , 459-466		2
104	The Role of Cytokines in Cancer Cachexia 2006 , 467-475		4
103	Interleukin-15 increases glucose uptake in skeletal muscle. An antidiabetogenic effect of the cytokine. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2006 , 1760, 1613-7	4	61

102	The AP-1/CJUN signaling cascade is involved in muscle differentiation: implications in muscle wasting during cancer cachexia. <i>FEBS Letters</i> , 2006 , 580, 691-6	3.8	23
101	Overexpression of UCP3 in both murine and human myotubes is linked with the activation of proteolytic systems: a role in muscle wasting?. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2006 , 1760, 253-8	4	13
100	Effects of interleukin-15 on lipid oxidation: disposal of an oral [(14)C]-triolein load. <i>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids</i> , 2006 , 1761, 37-42	5	43
99	Molecular mechanisms involved in muscle wasting in cancer and ageing: cachexia versus sarcopenia. <i>International Journal of Biochemistry and Cell Biology</i> , 2005 , 37, 1084-104	5.6	118
98	The pivotal role of cytokines in muscle wasting during cancer. <i>International Journal of Biochemistry and Cell Biology</i> , 2005 , 37, 1609-19	5.6	35
97	The pivotal role of cytokines in muscle wasting during cancer. <i>International Journal of Biochemistry and Cell Biology</i> , 2005 , 37, 2036-46	5.6	75
96	Activation of UCPs gene expression in skeletal muscle can be independent on both circulating fatty acids and food intake. Involvement of ROS in a model of mouse cancer cachexia. <i>FEBS Letters</i> , 2005 , 579, 717-22	3.8	45
95	Both oxidative and nitrosative stress are associated with muscle wasting in tumour-bearing rats. <i>FEBS Letters</i> , 2005 , 579, 1646-52	3.8	93
94	Mediators involved in the cancer anorexia-cachexia syndrome: past, present, and future. <i>Nutrition</i> , 2005 , 21, 977-85	4.8	73
93	Cross-talk between skeletal muscle and adipose tissue: a link with obesity?. <i>Medicinal Research Reviews</i> , 2005 , 25, 49-65	14.4	132
93 92		14.4	132
	Reviews, 2005, 25, 49-65 Cross-Talk Between Skeletal Muscle and Adipose Tissue: A Link with Obesity?. ChemInform, 2005,	14.4 4.4	Ť
92	Reviews, 2005, 25, 49-65 Cross-Talk Between Skeletal Muscle and Adipose Tissue: A Link with Obesity?. ChemInform, 2005, 36, no Interleukin-15 decreases lipid intestinal absorption. International Journal of Molecular Medicine,		1
92 91	Reviews, 2005, 25, 49-65 Cross-Talk Between Skeletal Muscle and Adipose Tissue: A Link with Obesity?. ChemInform, 2005, 36, no Interleukin-15 decreases lipid intestinal absorption. International Journal of Molecular Medicine, 2005, 15, 963-7 Interleukin-15 decreases proteolysis in skeletal muscle: a direct effect. International Journal of	4.4	7
92 91 90	Cross-Talk Between Skeletal Muscle and Adipose Tissue: A Link with Obesity?. ChemInform, 2005, 36, no Interleukin-15 decreases lipid intestinal absorption. International Journal of Molecular Medicine, 2005, 15, 963-7 Interleukin-15 decreases proteolysis in skeletal muscle: a direct effect. International Journal of Molecular Medicine, 2005, 16, 471-6 Effect of c-ski overexpression on the development of cachexia in mice bearing the Lewis lung	4.4	1 7 50
92 91 90 89	Cross-Talk Between Skeletal Muscle and Adipose Tissue: A Link with Obesity?. ChemInform, 2005, 36, no Interleukin-15 decreases lipid intestinal absorption. International Journal of Molecular Medicine, 2005, 15, 963-7 Interleukin-15 decreases proteolysis in skeletal muscle: a direct effect. International Journal of Molecular Medicine, 2005, 16, 471-6 Effect of c-ski overexpression on the development of cachexia in mice bearing the Lewis lung carcinoma International Journal of Molecular Medicine, 2004, 14, 719	4.4	1 7 50 1
92 91 90 89 88	Cross-Talk Between Skeletal Muscle and Adipose Tissue: A Link with Obesity?. ChemInform, 2005, 36, no Interleukin-15 decreases lipid intestinal absorption. International Journal of Molecular Medicine, 2005, 15, 963-7 Interleukin-15 decreases proteolysis in skeletal muscle: a direct effect. International Journal of Molecular Medicine, 2005, 16, 471-6 Effect of c-ski overexpression on the development of cachexia in mice bearing the Lewis lung carcinoma International Journal of Molecular Medicine, 2004, 14, 719 The pharmacological treatment of cachexia. Current Drug Targets, 2004, 5, 265-77 Anticachectic effects of formoterol: a drug for potential treatment of muscle wasting. Cancer	4·4 4·4 3	1 7 50 1 39

(2001-2004)

84	Rat liver lipogenesis is modulated by interleukin-15. <i>International Journal of Molecular Medicine</i> , 2004 , 13, 817-9	4.4	13
83	Cytokines in the pathogenesis of cancer cachexia. <i>Current Opinion in Clinical Nutrition and Metabolic Care</i> , 2003 , 6, 401-6	3.8	93
82	Catabolic mediators as targets for cancer cachexia. <i>Drug Discovery Today</i> , 2003 , 8, 838-44	8.8	38
81	Impaired voltage-gated K+ channel expression in brain during experimental cancer cachexia. <i>FEBS Letters</i> , 2003 , 536, 45-50	3.8	16
80	Reduced protein degradation rates and low expression of proteolytic systems support skeletal muscle hypertrophy in transgenic mice overexpressing the c-ski oncogene. <i>Cancer Letters</i> , 2003 , 200, 153-60	9.9	16
79	Cancer cachexia: the molecular mechanisms. <i>International Journal of Biochemistry and Cell Biology</i> , 2003 , 35, 405-9	5.6	85
78	Tumour necrosis factor-alpha uncouples respiration in isolated rat mitochondria. <i>Cytokine</i> , 2003 , 22, 1-4	4	36
77	Sepsis induces DNA fragmentation in rat skeletal muscle. <i>European Cytokine Network</i> , 2003 , 14, 256-9	3.3	10
76	Tumor necrosis factor-alpha exerts interleukin-6-dependent and -independent effects on cultured skeletal muscle cells. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2002 , 1542, 66-72	4.9	52
75	Branched-chain amino acids: a role in skeletal muscle proteolysis in catabolic states?. <i>Journal of Cellular Physiology</i> , 2002 , 191, 283-9	7	35
74	Les facteurs cataboliques du cancer : donnes relentes. Nutrition Clinique Et Metabolisme, 2002, 16, 14-25	0.8	2
73	The role of uncoupling proteins in pathophysiological states. <i>Biochemical and Biophysical Research Communications</i> , 2002 , 293, 1145-52	3.4	8o
72	Effects of interleukin-15 (IL-15) on adipose tissue mass in rodent obesity models: evidence for direct IL-15 action on adipose tissue. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2002 , 1570, 33-7	4	73
71	TNF-alpha modulates cytokine and cytokine receptors in C2C12 myotubes. <i>Cancer Letters</i> , 2002 , 175, 181-5	9.9	30
70	Effects of the phosphodiesterase-IV inhibitor EMD 95832/3 on tumour growth and cachexia in rats bearing the Yoshida AH-130 ascites hepatoma. <i>Cancer Letters</i> , 2002 , 188, 53-8	9.9	1
69	Cancer cachexia: a therapeutic approach. <i>Medicinal Research Reviews</i> , 2001 , 21, 83-101	14.4	61
68	Hepatic transport of gluconeogenic substrates during tumor growth in the rat. <i>Cancer Investigation</i> , 2001 , 19, 248-55	2.1	
67	Interleukin-15 mediates reciprocal regulation of adipose and muscle mass: a potential role in body weight control. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2001 , 1526, 17-24	4	128

66	Curcumin, a natural product present in turmeric, decreases tumor growth but does not behave as an anticachectic compound in a rat model. <i>Cancer Letters</i> , 2001 , 167, 33-8	9.9	76
65	Increased uncoupling protein-2 gene expression in brain of lipopolysaccharide-injected mice: role of tumour necrosis factor-alpha?. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2001 , 1499, 249-56	4.9	21
64	Hyperlipemia: a role in regulating UCP3 gene expression in skeletal muscle during cancer cachexia?. <i>FEBS Letters</i> , 2001 , 505, 255-8	3.8	28
63	Metabolic interrelationships between liver and skeletal muscle in pathological states. <i>Life Sciences</i> , 2001 , 69, 1345-61	6.8	15
62	Increased muscle ubiquitin mRNA levels in gastric cancer patients. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2001 , 280, R1518-23	3.2	109
61	Branched-chain amino acids inhibit proteolysis in rat skeletal muscle: mechanisms involved. <i>Journal of Cellular Physiology</i> , 2000 , 184, 380-4	7	53
60	Short-term effects of leptin on skeletal muscle protein metabolism in the rat. <i>Journal of Nutritional Biochemistry</i> , 2000 , 11, 431-5	6.3	30
59	DNA fragmentation occurs in skeletal muscle during tumor growth: A link with cancer cachexia?. <i>Biochemical and Biophysical Research Communications</i> , 2000 , 270, 533-7	3.4	87
58	Calpain-3 gene expression is decreased during experimental cancer cachexia. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2000 , 1475, 5-9	4	31
57	Mechanism for the increased skeletal muscle protein degradation in the obese Zucker rat. <i>Journal of Nutritional Biochemistry</i> , 1999 , 10, 244-8	6.3	15
56	The role of cytokines in cancer cachexia. <i>Medicinal Research Reviews</i> , 1999 , 19, 223-48	14.4	154
55	Leptin and tumor growth in rats. International Journal of Cancer, 1999, 81, 726-9	7.5	36
54	Leptin administration to lactating rats is unable to induce changes in lipid metabolism in white adipose tissue or mammary gland. <i>European Journal of Obstetrics, Gynecology and Reproductive Biology</i> , 1999 , 84, 93-7	2.4	2
53	Resveratrol, a natural product present in wine, decreases tumour growth in a rat tumour model. <i>Biochemical and Biophysical Research Communications</i> , 1999 , 254, 739-43	3.4	220
52	Leptin levels and gene expression during the perinatal phase in the rat. <i>European Journal of Obstetrics, Gynecology and Reproductive Biology</i> , 1998 , 81, 95-100	2.4	4
51	Role of TNF receptor 1 in protein turnover during cancer cachexia using gene knockout mice. <i>Molecular and Cellular Endocrinology</i> , 1998 , 142, 183-9	4.4	94
50	Tumour necrosis factor-alpha does not cross the rat placenta. Cancer Letters, 1998, 128, 101-4	9.9	12
49	Protein turnover in skeletal muscle of tumour-bearing transgenic mice overexpressing the soluble TNF receptor-1. <i>Cancer Letters</i> , 1998 , 130, 19-27	9.9	63

48	Different cytokines modulate ubiquitin gene expression in rat skeletal muscle. <i>Cancer Letters</i> , 1998 , 133, 83-7	9.9	92
47	Short-term effects of leptin on lipid metabolism in the rat. FEBS Letters, 1998, 431, 371-4	3.8	23
46	Skeletal muscle UCP2 and UCP3 gene expression in a rat cancer cachexia model. <i>FEBS Letters</i> , 1998 , 436, 415-8	3.8	60
45	In the rat, tumor necrosis factor alpha administration results in an increase in both UCP2 and UCP3 mRNAs in skeletal muscle: a possible mechanism for cytokine-induced thermogenesis?. <i>FEBS Letters</i> , 1998 , 440, 348-50	3.8	80
44	Tumor growth influences skeletal muscle protein turnover in the pregnant rat. <i>Pediatric Research</i> , 1998 , 43, 250-5	3.2	3
43	Catabolic proinflammatory cytokines. <i>Current Opinion in Clinical Nutrition and Metabolic Care</i> , 1998 , 1, 245-51	3.8	50
42	Is TNF really involved in cachexia?. Cancer Investigation, 1997, 15, 47-54	2.1	22
41	TNF can directly induce the expression of ubiquitin-dependent proteolytic system in rat soleus muscles. <i>Biochemical and Biophysical Research Communications</i> , 1997 , 230, 238-41	3.4	143
40	TNF and pregnancy: the paradigm of a complex interaction. <i>Cytokine and Growth Factor Reviews</i> , 1997 , 8, 181-8	17.9	43
39	Neutral amino acid transport in placental plasma membrane vesicles in the late pregnant rat. Evidence for a B0-like transport system. <i>European Journal of Obstetrics, Gynecology and Reproductive Biology</i> , 1997 , 71, 85-90	2.4	12
38	Lipid metabolism in tumour-bearing mice: studies with knockout mice for tumour necrosis factor receptor 1 protein. <i>Molecular and Cellular Endocrinology</i> , 1997 , 132, 93-9	4.4	25
37	Sequential changes in lipoprotein lipase activity and lipaemia induced by the Yoshida AH-130 ascites hepatoma in rats. <i>Cancer Letters</i> , 1997 , 116, 159-65	9.9	10
36	Comparative effects of beta2-adrenergic agonists on muscle waste associated with tumour growth. <i>Cancer Letters</i> , 1997 , 115, 113-8	9.9	42
35	Journey from cachexia to obesity by TNF. <i>FASEB Journal</i> , 1997 , 11, 743-51	0.9	111
34	The increased skeletal muscle protein turnover of the streptozotocin diabetic rat is associated with high concentrations of branched-chain amino acids. <i>Biochemical and Molecular Medicine</i> , 1997 , 61, 87-94	1	34
33	Lipogenesis in rat tissues following carbohydrate refeeding: spleen lipogenesis is modulated by insulin. <i>Molecular and Cellular Biochemistry</i> , 1997 , 175, 149-52	4.2	1
32	The ubiquitin-dependent proteolytic pathway in skeletal muscle: its role in pathological states. <i>Trends in Pharmacological Sciences</i> , 1996 , 17, 223-6	13.2	63
31	Muscle hypercatabolism during cancer cachexia is not reversed by the glucocorticoid receptor antagonist RU38486. <i>Cancer Letters</i> , 1996 , 99, 7-14	9.9	28

30	Anti-TNF treatment reverts increased muscle ubiquitin gene expression in tumour-bearing rats. <i>Biochemical and Biophysical Research Communications</i> , 1996 , 221, 653-5	3.4	68
29	alpha-Adrenergic receptors may contribute to the hypertriglyceridemia associated with tumour growth. <i>Cancer Letters</i> , 1996 , 110, 213-6	9.9	3
28	Lipid metabolism in rats bearing the Yoshida AH-130 ascites hepatoma. <i>Molecular and Cellular Biochemistry</i> , 1996 , 165, 17-23	4.2	16
27	Metabolic effects of tumour necrosis factor-alpha on rat brown adipose tissue. <i>Molecular and Cellular Biochemistry</i> , 1995 , 143, 113-8	4.2	10
26	Lipopolysaccharide (LPS) increases the in vivo oxidation of branched-chain amino acids in the rat: a cytokine-mediated effect. <i>Molecular and Cellular Biochemistry</i> , 1995 , 148, 9-15	4.2	17
25	Enhanced leucine oxidation in rats bearing an ascites hepatoma (Yoshida AH-130) and its reversal by clenbuterol. <i>Cancer Letters</i> , 1995 , 91, 73-8	9.9	24
24	Lack of effect of eicosapentaenoic acid in preventing cancer cachexia and inhibiting tumor growth. <i>Cancer Letters</i> , 1995 , 97, 25-32	9.9	21
23	The effects of tumour growth on circulating amino acids in the late pregnant rat. <i>Cancer Letters</i> , 1995 , 88, 21-5	9.9	1
22	Marked hyperlipidaemia in rats bearing the Yoshida AH-130 ascites hepatoma. <i>Biochemical Society Transactions</i> , 1995 , 23, 492S	5.1	2
21	TNF and AIDS: two sides of the same coin?. <i>Medicinal Research Reviews</i> , 1995 , 15, 533-46	14.4	7
21	TNF and AIDS: two sides of the same coin?. <i>Medicinal Research Reviews</i> , 1995 , 15, 533-46 Muscle wasting associated with cancer cachexia is linked to an important activation of the ATP-dependent ubiquitin-mediated proteolysis. <i>International Journal of Cancer</i> , 1995 , 61, 138-41	14.4 7.5	7 98
	Muscle wasting associated with cancer cachexia is linked to an important activation of the		
20	Muscle wasting associated with cancer cachexia is linked to an important activation of the ATP-dependent ubiquitin-mediated proteolysis. <i>International Journal of Cancer</i> , 1995 , 61, 138-41 The effects of tumour necrosis factor-alpha on circulating amino acids in the pregnant rat. <i>Cancer</i>	7.5	98
20	Muscle wasting associated with cancer cachexia is linked to an important activation of the ATP-dependent ubiquitin-mediated proteolysis. <i>International Journal of Cancer</i> , 1995 , 61, 138-41 The effects of tumour necrosis factor-alpha on circulating amino acids in the pregnant rat. <i>Cancer Letters</i> , 1994 , 79, 27-32	7·5 9·9 9·9	98
20 19 18	Muscle wasting associated with cancer cachexia is linked to an important activation of the ATP-dependent ubiquitin-mediated proteolysis. <i>International Journal of Cancer</i> , 1995 , 61, 138-41 The effects of tumour necrosis factor-alpha on circulating amino acids in the pregnant rat. <i>Cancer Letters</i> , 1994 , 79, 27-32 Interleukin-6 does not activate protein breakdown in rat skeletal muscle. <i>Cancer Letters</i> , 1994 , 76, 1-4	7·5 9·9 9·9	98 3 43
20 19 18	Muscle wasting associated with cancer cachexia is linked to an important activation of the ATP-dependent ubiquitin-mediated proteolysis. <i>International Journal of Cancer</i> , 1995 , 61, 138-41 The effects of tumour necrosis factor-alpha on circulating amino acids in the pregnant rat. <i>Cancer Letters</i> , 1994 , 79, 27-32 Interleukin-6 does not activate protein breakdown in rat skeletal muscle. <i>Cancer Letters</i> , 1994 , 76, 1-4 Alanine metabolism in rats bearing the Yoshida AH-130 ascites hepatoma. <i>Cancer Letters</i> , 1994 , 87, 123 Ubiquitin gene expression is increased in skeletal muscle of tumour-bearing rats. <i>FEBS Letters</i> , 1994	7·5 9·9 9·9	98 3 43 9
20 19 18 17	Muscle wasting associated with cancer cachexia is linked to an important activation of the ATP-dependent ubiquitin-mediated proteolysis. <i>International Journal of Cancer</i> , 1995 , 61, 138-41 The effects of tumour necrosis factor-alpha on circulating amino acids in the pregnant rat. <i>Cancer Letters</i> , 1994 , 79, 27-32 Interleukin-6 does not activate protein breakdown in rat skeletal muscle. <i>Cancer Letters</i> , 1994 , 76, 1-4 Alanine metabolism in rats bearing the Yoshida AH-130 ascites hepatoma. <i>Cancer Letters</i> , 1994 , 87, 123 Ubiquitin gene expression is increased in skeletal muscle of tumour-bearing rats. <i>FEBS Letters</i> , 1994 , 338, 311-8 Anti-tumour necrosis factor-alpha treatment interferes with changes in lipid metabolism in a	7.5 9.9 9.9 -309	98 3 43 9

LIST OF PUBLICATIONS

12	Letters, 1993 , 323, 211-4	3.8	116
11	The enzymatic activities of branched-chain amino acid catabolism in tumour-bearing rats. <i>Cancer Letters</i> , 1992 , 61, 239-42	9.9	7
10	Metabolism of glucose in isolated intestinal cells from obese zucker rats. <i>Nutrition Research</i> , 1992 , 12, 949-954	4	
9	Amino acid metabolism in several tissues of the obese Zucker rat as indicated by the tissue accumulation of alpha-amino[1-14C]isobutyrate. <i>Molecular and Cellular Biochemistry</i> , 1992 , 110, 155-9	4.2	2
8	The role of insulin in the intestinal absorption of glucose in the rat. <i>International Journal of Biochemistry & Cell Biology</i> , 1992 , 24, 631-6		3
7	The role of cytokines in muscle wasting: its relation with cancer cachexia. <i>Medicinal Research Reviews</i> , 1992 , 12, 637-52	14.4	74
6	Glucose handling by hepatocytes from obese Zucker rats. <i>Bioscience Reports</i> , 1991 , 11, 285-92	4.1	2
5	Intestinal amino acid transport: an overview. <i>International Journal of Biochemistry & Cell Biology</i> , 1990 , 22, 931-7		15
4	In vitro alanine utilization by rat interscapular brown adipose tissue. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 1990 , 1036, 6-10	4	3
3	Effects of tumour necrosis factor on hepatic amino acid uptake. <i>Biochemical Society Transactions</i> , 1989 , 17, 1045-6	5.1	3
2	Oxidation of branched-chain amino acids in tumor-bearing rats. <i>Biochemical Society Transactions</i> , 1989 , 17, 1044-5	5.1	6
1	The appearance of 2,3-butanediol in the chronic ethanol treated pregnant rat. <i>Drug and Alcohol Dependence</i> , 1986 , 18, 335-9	4.9	2