Salvatore Sciacchitano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7895438/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thyroid hormones regulate cardiac repolarization and QT-interval related gene expression in hiPSC cardiomyocytes. Scientific Reports, 2022, 12, 568.	3.3	4
2	Challenges in Diagnosis and Clinical Management of COVID-19 in Patient with B-Cell Chronic Lymphocytic Leukemia (CLL): Report of One Case. Hematology Reports, 2022, 14, 31-37.	0.8	1
3	Nonthyroidal Illness Syndrome: To Treat or Not to Treat? Have We Answered the Question? A Review of Metanalyses. Frontiers in Endocrinology, 2022, 13, .	3.5	18
4	Transparency in Negotiation of European Union With Big Pharma on COVID-19 Vaccines. Frontiers in Public Health, 2021, 9, 647955.	2.7	12
5	Circulating Vitamin D levels status and clinical prognostic indices in COVID-19 patients. Respiratory Research, 2021, 22, 76.	3.6	30
6	Interleukin‑6 signalling as a valuable cornerstone for molecular medicine (Review). International Journal of Molecular Medicine, 2021, 47, .	4.0	18
7	Gene signature and immune cell profiling by high-dimensional, single-cell analysis in COVID-19 patients, presenting Low T3 syndrome and coexistent hematological malignancies. Journal of Translational Medicine, 2021, 19, 139.	4.4	13
8	H-Ras gene takes part to the host immune response to COVID-19. Cell Death Discovery, 2021, 7, 158.	4.7	11
9	Generation and characterization of the human induced pluripotent stem cell (hiPSC) line NCUFi001-A from a patient carrying KCNQ1 G314S mutation. Stem Cell Research, 2021, 54, 102418.	0.7	2
10	Age is not the only risk factor in COVID-19: the role of comorbidities and of long staying in residential care homes. BMC Geriatrics, 2021, 21, 63.	2.7	63
11	Multi-omic approach identifies a transcriptional network coupling innate immune response to proliferation in the blood of COVID-19 cancer patients. Cell Death and Disease, 2021, 12, 1019.	6.3	3
12	Nonthyroidal illness syndrome (NTIS) in severe COVID-19 patients: role of T3 on the Na/K pump gene expression and on hydroelectrolytic equilibrium. Journal of Translational Medicine, 2021, 19, 491.	4.4	6
13	Scientific leadership: the Italian Government's perspective. Lancet, The, 2019, 394, 562-563.	13.7	0
14	Serum interleukin-6 levels are increased in HIV-infected patients that develop autoimmune disease during long-term follow-up. Immunobiology, 2018, 223, 264-268.	1.9	17
15	Nanostructures: between natural environment and medical practice. Reviews on Environmental Health, 2018, 33, 295-307.	2.4	18
16	Galectin-3: One Molecule for an Alphabet of Diseases, from A to Z. International Journal of Molecular Sciences, 2018, 19, 379.	4.1	252
17	Galectin-3: The Impact on the Clinical Management of Patients with Thyroid Nodules and Future Perspectives. International Journal of Molecular Sciences, 2018, 19, 445.	4.1	22
18	Safety and efficacy of denosumab in osteoporotic hemodialysed patients. Journal of Nephrology, 2017, 30. 271-279.	2.0	47

#	Article	IF	CITATIONS
19	Antiproliferative Effects of 1α-OH-vitD3 in Malignant Melanoma: Potential Therapeutic implications. Scientific Reports, 2017, 7, 40370.	3.3	20
20	Comparative analysis of diagnostic performance, feasibility and cost of different test-methods for thyroid nodules with indeterminate cytology. Oncotarget, 2017, 8, 49421-49442.	1.8	45
21	Detection of ATM germline variants by the p53 mitotic centrosomal localization test in BRCA1/2-negative patients with early-onset breast cancer. Journal of Experimental and Clinical Cancer Research, 2016, 35, 135.	8.6	9
22	Combined clinical and ultrasound follow-up assists in malignancy detection in Galectin-3 negative Thy-3 thyroid nodules. Endocrine, 2016, 54, 139-147.	2.3	10
23	Investigation of VOCs associated with different characteristics of breast cancer cells. Scientific Reports, 2015, 5, 13246.	3.3	60
24	Changes in cervical cancer incidence following the introduction of organized screening in Italy. Preventive Medicine, 2015, 75, 56-63.	3.4	35
25	Homeodomainâ€interacting protein kinase2 in human idiopathic pulmonary fibrosis. Journal of Cellular Physiology, 2013, 228, 235-241.	4.1	26
26	Methodology and Technical Requirements of the Galectin-3 Test for the Preoperative Characterization of Thyroid Nodules. Applied Immunohistochemistry and Molecular Morphology, 2012, 20, 2-7.	1.2	19
27	Effects of long-term hormone replacement therapy: Results from a cohort study. Journal of Endocrinological Investigation, 2011, 34, 180-184.	3.3	2
28	The Loss of the p53 Activator HIPK2 Is Responsible for Galectin-3 Overexpression in Well Differentiated Thyroid Carcinomas. PLoS ONE, 2011, 6, e20665.	2.5	54
29	<i>Galâ€3</i> is stimulated by gainâ€ofâ€function <i>p53</i> mutations and modulates chemoresistance in anaplastic thyroid carcinomas. Journal of Pathology, 2009, 218, 66-75.	4.5	33
30	COXâ€2 is induced by HGF stimulation in Metâ€positive thyroid papillary carcinoma cells and is involved in tumour invasiveness. Journal of Pathology, 2009, 218, 487-494.	4.5	24
31	Serum hepatocyte growth factor is increased in Hashimoto's thyroiditis whether or not it is associated with nodular goiter as compared with healthy non-goitrous individuals. Journal of Endocrinological Investigation, 2009, 32, 465-469.	3.3	15
32	Serum CA 15-3 is increased in pulmonary fibrosis. Sarcoidosis Vasculitis and Diffuse Lung Diseases, 2009, 26, 54-63.	0.2	21
33	<i>Frizzledâ€l </i> is downâ€regulated in follicular thyroid tumours and modulates growth and invasiveness. Journal of Pathology, 2008, 215, 87-96.	4.5	17
34	Thyroid fine needle aspiration: How to improve clinicians' confidence and performance with the technique. Cancer Letters, 2008, 264, 163-171.	7.2	22
35	Galectin-3-expression analysis in the surgical selection of follicular thyroid nodules with indeterminate fine-needle aspiration cytology: a prospective multicentre study. Lancet Oncology, The, 2008, 9, 543-549.	10.7	284
36	P-60 Signaling differences in the A and B isoforms of the insulin receptor in 32D cells stimulated by either insulin or IGF-II in the presence of IRS-3. Growth Hormone and IGF Research, 2008, 18, S44-S45.	1.1	0

#	Article	IF	CITATIONS
37	Thyroid Cancer Imaging In Vivo by Targeting the Anti-Apoptotic Molecule Galectin-3. PLoS ONE, 2008, 3, e3768.	2.5	33
38	Expression of NA/1 symporter (NIS) in endometrial mucosa of fertile, sterile and post-menopausal women. Histology and Histopathology, 2008, 23, 549-54.	0.7	4
39	CD5 ⁺ B cells with the features of subepithelial B cells found in human tonsils. European Journal of Immunology, 2007, 37, 2138-2147.	2.9	17
40	Expression of p53/hgf/c-met/STAT3 signal in fetuses with neural tube defects. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2007, 450, 203-210.	2.8	12
41	Expression of hepatocyte growth factor in Hashimoto's thyroiditis with nodular lesions. European Journal of Histochemistry, 2007, 51, 193-8.	1.5	4
42	The use ofÂLaser Capture Microdissection inÂtheÂidentification ofÂnew putative oncosoppressor genes inÂthyroid cancer. Biomedicine and Pharmacotherapy, 2006, 60, 490-491.	5.6	0
43	Analysis ofÂtheÂrole ofÂp53 andÂGalectin-3 inÂproliferation andÂapoptosis ofÂthyroid carcinoma cell lines byÂspecific RNA interference experiments. Biomedicine and Pharmacotherapy, 2006, 60, 491.	5.6	0
44	Behaviour of some indicators of oxidative stress in postmenopausal and fertile women. Maturitas, 2006, 53, 77-82.	2.4	123
45	Large needle aspiration biopsy and galectin-3 determination in selected thyroid nodules with indeterminate FNA-cytology. British Journal of Cancer, 2006, 95, 204-209.	6.4	52
46	Repression of the Antiapoptotic Molecule Galectin-3 by Homeodomain-Interacting Protein Kinase 2-Activated p53 Is Required for p53-Induced Apoptosis. Molecular and Cellular Biology, 2006, 26, 4746-4757.	2.3	93
47	Immunoexpression of Multidrug-Resistance Protein 2 and Cyclooxygenase 2 in Medullary Thyroid Carcinomas. Archives of Pathology and Laboratory Medicine, 2006, 130, 1014-1019.	2.5	11
48	Immunoexpression of the CD30 ligand/CD30 and IL-6/IL-6R signals in thyroid autoimmune diseases. Histology and Histopathology, 2006, 21, 249-56.	0.7	18
49	3,5,3′-Triiodo-L-thyronine enhances the differentiation of a human pancreatic duct cell line (hPANC-1) towards a β-cell-Like phenotype. Journal of Cellular Physiology, 2005, 204, 286-296.	4.1	36
50	Clinico-pathological significance of cell-type-specific loss of heterozygosity on chromosome 7q21: analysis of 318 microdissected thyroid lesions Endocrine-Related Cancer, 2004, 11, 365-376.	3.1	14
51	Detection and molecular characterisation of thyroid cancer precursor lesions in a specific subset of Hashimoto's thyroiditis. British Journal of Cancer, 2004, 91, 1096-1104.	6.4	41
52	Correlation between some metabolic markers of vascular risk and carotid artery intima-media thickness in postmenopausal women. Maturitas, 2004, 49, 134-139.	2.4	0
53	Demonstration of a Gastric Bioptic Specimen Mix-up by Laser Capture Microdissection (LCM) and DNA Fingerprinting. American Journal of Forensic Medicine and Pathology, 2004, 25, 113-116.	0.8	4
54	Detection of deleted mitochondrial DNA in Kearns-Sayre syndrome using laser capture microdissection. Human Pathology, 2003, 34, 1058-1061.	2.0	20

SALVATORE SCIACCHITANO

#	Article	IF	CITATIONS
55	Role of Pleckstrin Homology Domain in Regulating Membrane Targeting and Metabolic Function of Insulin Receptor Substrate 3. Molecular Endocrinology, 2003, 17, 1568-1579.	3.7	16
56	Cloning of the Mouse Insulin Receptor Substrate-3 (mIRS-3) Promoter, and Its Regulation by p53. Molecular Endocrinology, 2002, 16, 1577-1589.	3.7	9
57	Cloning of the Mouse Insulin Receptor Substrate-3 (mIRS-3) Promoter, and Its Regulation by p53. Molecular Endocrinology, 2002, 16, 1577-1589.	3.7	2
58	Duration of menopause and behavior of malondialdehyde, lipids, lipoproteins and carotid wall artery intima-media thickness. Maturitas, 2001, 39, 39-42.	2.4	30
59	Increased <i>c-met</i> Expression During Ductal β Cell Neogenesis in Experimental Autoimmune Diabetes. Growth Factors, 2001, 19, 259-267.	1.7	6
60	Effects of long-term hormone replacement therapy on arterial wall thickness, lipids and lipoproteins, fibrinogen and antithrombin III. Gynecological Endocrinology, 2001, 15, 367-372.	1.7	2
61	Hyperthyroidism with concurrent thyroid cancer. Annali Italiani Di Chirurgia, 2001, 72, 293-7.	0.1	7
62	Different Subcellular Localization and Phosphoinositides Binding of Insulin Receptor Substrate Protein Pleckstrin Homology Domains. Molecular Endocrinology, 2000, 14, 823-836.	3.7	66
63	Behaviour of the carotid wall in menopausal women with and without arterial hypertension. Maturitas, 2000, 35, 39-43.	2.4	3
64	Mapping a Dominant Form of Multinodular Goiter to Chromosome Xp22. American Journal of Human Genetics, 2000, 67, 1004-1007.	6.2	48
65	Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes, 2000, 49, 1880-1889.	0.6	471
66	Different Subcellular Localization and Phosphoinositides Binding of Insulin Receptor Substrate Protein Pleckstrin Homology Domains. Molecular Endocrinology, 2000, 14, 823-836.	3.7	16
67	Action of Insulin Receptor Substrate-3 (IRS-3) and IRS-4 to Stimulate Translocation of GLUT4 in Rat Adipose Cells. Molecular Endocrinology, 1999, 13, 505-514.	3.7	56
68	Action of Insulin Receptor Substrate-3 (IRS-3) and IRS-4 to Stimulate Translocation of GLUT4 in Rat Adipose Cells. Molecular Endocrinology, 1999, 13, 505-514.	3.7	26
69	An introduction to benign thyroid disease: pathophysiologic, epidemiologic aspects and diagnostic methodology. Rays, 1999, 24, 169-81.	0.2	1
70	Prevalence of Thyroid Cancer in Hyperthyroid Patients Treated by Surgery. World Journal of Surgery, 1998, 22, 473-478.	1.6	22
71	Diagnostic Accuracy of Conventional Versus Sonography-Guided Fine-Needle Aspiration Biopsy of Thyroid Nodules. Thyroid, 1998, 8, 15-21.	4.5	489
72	Insulin Receptor Substrate-2 (IRS-2) Can Mediate the Action of Insulin to Stimulate Translocation of GLUT4 to the Cell Surface in Rat Adipose Cells. Journal of Biological Chemistry, 1997, 272, 29829-29833.	3.4	46

#	Article	IF	CITATIONS
73	Cloning, Tissue Expression, and Chromosomal Localization of the Mouse IRS-3 Gene. Endocrinology, 1997, 138, 4931-4940.	2.8	80
74	Thyroid carcinoma in children and adolescents. European Journal of Pediatrics, 1997, 156, 190-194.	2.7	68
75	Cloning, Tissue Expression, and Chromosomal Localization of the Mouse IRS-3 Gene. Endocrinology, 1997, 138, 4931-4940.	2.8	31
76	Analysis of adenomatous polyposis coli gene in thyroid tumours. British Journal of Cancer, 1994, 70, 1085-1088.	6.4	47
77	Estrogen receptors: new perspectives in breast cancer management. Journal of Steroid Biochemistry and Molecular Biology, 1994, 49, 327-331.	2.5	36
78	PCR Amplification and Analysis of RAS Oncogenes from Thyroid Cytologic Smears. Diagnostic Molecular Pathology, 1994, 3, 114-121.	2.1	32
79	Defective human retinoblastoma protein identified by lack of interaction with the E1A oncoprotein. Cancer Research, 1994, 54, 1098-104.	0.9	7
80	The dilemma of indeterminate thyroid cytology: how many markers are needed for a reliable diagnosis?. Annals of Thyroid, 0, 3, 17-17.	1.0	0
81	Multi-omics approach to analyze the molecular pato-physiology of the low T3 syndrome, observed in COVID-19 patients. Endocrine Abstracts, 0, , .	0.0	Ο
82	Low FT3 serum values are associated with markers of disease severity, evaluated during the acute phase of COVID-19. Endocrine Abstracts, 0, , .	0.0	0
83	Low FT3 Values During the Acute Phase of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection Correlate to the Severity Indexes of the Disease, SSRN Electronic Journal, O	0.4	1