

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7895374/publications.pdf Version: 2024-02-01

MINCLI

#	Article	IF	CITATIONS
1	Applying a Three-dimensional Habitat Volume Model to Estimate Sensitivity of Chesapeake Bay Living Resources to Environmental Change: a Proof-of-Concept Exercise. Estuaries and Coasts, 2022, 45, 393-412.	2.2	2
2	A three-dimensional mixotrophic model of Karlodinium veneficum blooms for a eutrophic estuary. Harmful Algae, 2022, 113, 102203.	4.8	19
3	A Metamodel-Based Analysis of the Sensitivity and Uncertainty of the Response of Chesapeake Bay Salinity and Circulation to Projected Climate Change. Estuaries and Coasts, 2021, 44, 70-87.	2.2	5
4	Natural and Anthropogenic Drivers of Acidification in Large Estuaries. Annual Review of Marine Science, 2021, 13, 23-55.	11.6	68
5	A three-dimensional mechanistic model of Prorocentrum minimum blooms in eutrophic Chesapeake Bay. Science of the Total Environment, 2021, 769, 144528.	8.0	20
6	Supply ontrolled calcium carbonate dissolution decouples the seasonal dissolved oxygen and <scp>pH</scp> minima in Chesapeake Bay. Limnology and Oceanography, 2021, 66, 3796-3810.	3.1	8
7	Seasonal life strategy of <scp><i>Prorocentrum minimum</i></scp> in Chesapeake Bay, <scp>USA</scp> : Validation of the role of physical transport using a coupled physical–biogeochemical–harmful algal bloom model. Limnology and Oceanography, 2021, 66, 3873-3886	3.1	7
8	Impacts of Oceanic Mixed Layer on Hurricanes: A Simulation Experiment With Hurricane Sandy. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015851.	2.6	5
9	Climate-induced interannual variability and projected change of two harmful algal bloom taxa in Chesapeake Bay, USA. Science of the Total Environment, 2020, 744, 140947.	8.0	9
10	Effects of Wind-Driven Lateral Upwelling on Estuarine Carbonate Chemistry. Frontiers in Marine Science, 2020, 7, .	2.5	13
11	Estuarine Forecasts at Daily Weather to Subseasonal Time Scales. Earth and Space Science, 2020, 7, e2020EA001179.	2.6	5
12	Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling. Nature Geoscience, 2020, 13, 441-447.	12.9	44
13	Discerning effects of warming, sea level rise and nutrient management on long-term hypoxia trends in Chesapeake Bay. Science of the Total Environment, 2020, 737, 139717.	8.0	35
14	Understanding Anthropogenic Impacts on pH and Aragonite Saturation State in Chesapeake Bay: Insights From a 30â€Year Model Study. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JC005620.	3.0	20
15	Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland. Natural Hazards, 2020, 103, 2561-2588.	3.4	31
16	The recurring impact of storm disturbance on black sea bass (Centropristis striata) movement behaviors in the Mid-Atlantic Bight. PLoS ONE, 2020, 15, e0239919.	2.5	4
17	Probabilistic Projections of High-Tide Flooding for the State of Maryland in the Twenty-First Century. , 2020, , 65-86.		1
18	Ecosystem Metabolism and Carbon Balance in Chesapeake Bay: A 30‥ear Analysis Using a Coupled Hydrodynamicâ€Biogeochemical Model. Journal of Geophysical Research: Oceans, 2019, 124, 6141-6153.	2.6	34

#	Article	IF	CITATIONS
19	Impacts of Ocean Warming, Sea Level Rise, and Coastline Management on Storm Surge in a Semienclosed Bay. Journal of Geophysical Research: Oceans, 2019, 124, 6498-6514.	2.6	15
20	Influences of a River Dam on Delivery and Fate of Sediments and Particulate Nutrients to the Adjacent Estuary: Case Study of Conowingo Dam and Chesapeake Bay. Estuaries and Coasts, 2019, 42, 2072-2095.	2.2	27
21	Ocean destratification and fish evacuation caused by a Mid-Atlantic tropical storm. ICES Journal of Marine Science, 2019, 76, 573-584.	2.5	20
22	Generation of Internal Lee Waves by Lateral Circulation in a Coastal Plain Estuary. Journal of Physical Oceanography, 2019, 49, 1687-1697.	1.7	6
23	Wind-driven lateral variations of partial pressure of carbon dioxide in a large estuary. Journal of Marine Systems, 2019, 195, 67-73.	2.1	6
24	Large Projected Decline in Dissolved Oxygen in a Eutrophic Estuary Due to Climate Change. Journal of Geophysical Research: Oceans, 2019, 124, 8271-8289.	2.6	59
25	Controls on Carbonate System Dynamics in a Coastal Plain Estuary: A Modeling Study. Journal of Geophysical Research C: Biogeosciences, 2019, 124, 61-78.	3.0	51
26	Observations of the lateral structure of wind-driven flow in a coastal plain estuary. Estuarine, Coastal and Shelf Science, 2019, 217, 262-270.	2.1	5
27	Generation of Nearâ€Inertial Currents on the Midâ€Atlantic Bight by Hurricane Arthur (2014). Journal of Geophysical Research: Oceans, 2018, 123, 3100-3116.	2.6	4
28	Advancements and Continuing Challenges of Emerging Technologies and Tools for Detecting Harmful Algal Blooms, Their Antecedent Conditions and Toxins, and Applications in Predictive Models. Ecological Studies, 2018, , 339-357.	1.2	5
29	Effects of Wind Straining on Estuarine Stratification: A Combined Observational and Modeling Study. Journal of Geophysical Research: Oceans, 2018, 123, 2363-2380.	2.6	43
30	Time and Scale Dependence in Estuarine Longitudinal Dispersion. Journal of Geophysical Research: Oceans, 2018, 123, 8792-8811.	2.6	1
31	Roles of Windâ€Driven Currents and Surface Waves in Sediment Resuspension and Transport During a Tropical Storm. Journal of Geophysical Research: Oceans, 2018, 123, 8638-8654.	2.6	26
32	Impact of sea level rise on tidal range in Chesapeake and Delaware Bays. Journal of Geophysical Research: Oceans, 2017, 122, 3917-3938.	2.6	85
33	Parameterization of mixing by secondary circulation in estuaries. Journal of Geophysical Research: Oceans, 2017, 122, 5666-5688.	2.6	4
34	Baroclinic Effects on Wind-Driven Lateral Circulation in Chesapeake Bay. Journal of Physical Oceanography, 2017, 47, 433-445.	1.7	19
35	Fingerprints of Sea Level Rise on Changing Tides in the Chesapeake and Delaware Bays. Journal of Geophysical Research: Oceans, 2017, 122, 8102-8125.	2.6	47
36	Flood-ebb and spring-neap variations of lateral circulation in the James River estuary. Continental Shelf Research, 2017, 148, 9-18.	1.8	11

#	Article	IF	CITATIONS
37	Sensitivity Analysis of Hurricane Arthur (2014) Storm Surge Forecasts to WRF Physics Parameterizations and Model Configurations. Weather and Forecasting, 2017, 32, 1745-1764.	1.4	14
38	Breaking of internal solitary waves generated by an estuarine gravity current. Geophysical Research Letters, 2017, 44, 7366-7373.	4.0	11
39	Generation of Internal Solitary Waves by Lateral Circulation in a Stratified Estuary. Journal of Physical Oceanography, 2017, 47, 1789-1797.	1.7	10
40	Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay. Nature Communications, 2017, 8, 369.	12.8	128
41	Modeling Physical and Biogeochemical Controls on Dissolved Oxygen in Chesapeake Bay: Lessons Learned from Simple and Complex Approaches. , 2017, , 95-118.		7
42	Challenges associated with modeling low-oxygen waters inÂChesapeake Bay: a multiple model comparison. Biogeosciences, 2016, 13, 2011-2028.	3.3	73
43	What drives interannual variability of hypoxia in Chesapeake Bay: Climate forcing versus nutrient loading?. Geophysical Research Letters, 2016, 43, 2127-2134.	4.0	91
44	The influence of climate modes on streamflow in the Mid-Atlantic region of the United States. Journal of Hydrology: Regional Studies, 2016, 5, 80-99.	2.4	40
45	Linkage between lateral circulation and nearâ€surface vertical mixing in a coastal plain estuary. Journal of Geophysical Research: Oceans, 2015, 120, 4048-4067.	2.6	14
46	A Budget Analysis of Bottom-Water Dissolved Oxygen in Chesapeake Bay. Estuaries and Coasts, 2015, 38, 2132-2148.	2.2	53
47	Sea-level rise and other influences on decadal-scale salinity variability in a coastal plain estuary. Estuarine, Coastal and Shelf Science, 2015, 157, 79-92.	2.1	51
48	Analysis of Vortex Dynamics of Lateral Circulation in a Straight Tidal Estuary*. Journal of Physical Oceanography, 2014, 44, 2779-2795.	1.7	24
49	Sediment deposition from tropical storms in the upper Chesapeake Bay: Field observations and model simulations. Continental Shelf Research, 2014, 86, 6-16.	1.8	45
50	Quantifying the effects of nutrient loading on dissolved O2 cycling and hypoxia in Chesapeake Bay using a coupled hydrodynamic–biogeochemical model. Journal of Marine Systems, 2014, 139, 139-158.	2.1	100
51	Predicting and Visualizing Storm Surges and Coastal Inundation: A Case Study from Maryland, USA. Advances in Natural and Technological Hazards Research, 2014, , 131-148.	1.1	0
52	Role of Late Winter–Spring Wind Influencing Summer Hypoxia in Chesapeake Bay. Estuaries and Coasts, 2013, 36, 683-696.	2.2	33
53	Role of Ekman transport versus Ekman pumping in driving summer upwelling in the South China Sea. Journal of Ocean University of China, 2013, 12, 355-365.	1.2	29
54	River flow control on the phytoplankton dynamics of Chesapeake Bay. Journal of Ocean University of China, 2013, 12, 103-114.	1.2	1

#	Article	IF	CITATIONS
55	Generation of an estuarine sediment plume by a tropical storm. Journal of Geophysical Research: Oceans, 2013, 118, 856-868.	2.6	42
56	Roles of breaking waves and Langmuir circulation in the surface boundary layer of a coastal ocean. Journal of Geophysical Research: Oceans, 2013, 118, 5173-5187.	2.6	28
57	Observing the urban estuary: Review and prospect. , 2012, , .		2
58	Effects of tides on freshwater and volume transports in the Changjiang River plume. Journal of Geophysical Research, 2012, 117, .	3.3	29
59	Windâ€driven lateral circulation in a stratified estuary and its effects on the alongâ€channel flow. Journal of Geophysical Research, 2012, 117, .	3.3	51
60	Dynamics of windâ€driven circulation in a shallow lagoon with strong horizontal density gradient. Journal of Geophysical Research, 2012, 117, .	3.3	14
61	Circulation dynamics and salt balance in a lagoonal estuary. Journal of Geophysical Research, 2012, 117, .	3.3	26
62	Seasonal variation of eddy kinetic energy in the South China Sea. Acta Oceanologica Sinica, 2012, 31, 1-15.	1.0	18
63	Tidal effects on the bulge region of Changjiang River plume. Estuarine, Coastal and Shelf Science, 2012, 97, 149-160.	2.1	63
64	Effects of winds on stratification and circulation in a partially mixed estuary. Journal of Geophysical Research, 2011, 116, .	3.3	69
65	How do uncertainties in hurricane model forecasts affect storm surge predictions in a semi-enclosed bay?. Estuarine, Coastal and Shelf Science, 2010, 90, 61-72.	2.1	47
66	Largeâ€eddy simulation of the tidal ycle variations of an estuarine boundary layer. Journal of Geophysical Research, 2010, 115, .	3.3	14
67	Sensitivity of plankton biomass and productivity to variations in physical forcing and biological parameters in Chesapeake Bay. Journal of Marine Research, 2009, 67, 667-700.	0.3	17
68	Large Eddy Simulations of Upper-Ocean Response to a Midlatitude Storm and Comparison with Observations*. Journal of Physical Oceanography, 2009, 39, 2295-2309.	1.7	15
69	Flood–ebb and spring–neap variations of mixing, stratification and circulation in Chesapeake Bay. Continental Shelf Research, 2009, 29, 4-14.	1.8	69
70	Is there a signal of seaâ€level rise in Chesapeake Bay salinity?. Journal of Geophysical Research, 2008, 113, .	3.3	70
71	Resonance and sea level variability in Chesapeake Bay. Continental Shelf Research, 2008, 28, 2565-2573.	1.8	51
72	Asymmetric Tidal Mixing due to the Horizontal Density Gradient*. Journal of Physical Oceanography, 2008, 38, 418-434.	1.7	31

ARTICLE IF CITATIONS Vertical swimming behavior influences the dispersal of simulated oyster larvae in a coupled particle-tracking and hydrodynamic model of Chesapeake Bay. Marine Ecology - Progress Series, 2008, . 359, 99-115. Chesapeake Inundation Prediction System (CIPS): A Regional Prototype for a National Problem., 2007, , . 74 1 The Coupled Boundary Layers and Air–Sea Transfer Experiment in Low Winds. Bulletin of the American 3.3 154 Meteorological Society, 2007, 88, 341-356. Hurricane-induced destratification and restratification in a partially-mixed estuary. Journal of Marine 76 0.3 65 Research, 2007, 65, 169-192. Wall-layer models for large-eddy simulations of high Reynolds number non-equilibrium flows., 2007, 47-54. Hurricane-induced storm surges, currents and destratification in a semi-enclosed bay. Geophysical 78 4.0 77 Research Letters, 2006, 33, . 79 Tidal energy fluxes and dissipation in the Chesapeake Bay. Continental Shelf Research, 2006, 26, 752-770. 1.8 Effects of time dependence in unstratified tidal boundary layers: results from large eddy simulations. 80 2.114 Estuarine, Coastal and Shelf Science, 2005, 62, 193-204. A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Research Part I: 1.4 135 Oceanographic Research Papers, 2005, 52, 259-278. Simulations of Chesapeake Bay estuary: Sensitivity to turbulence mixing parameterizations and 82 3.3 158 comparison with observations. Journal of Geophysical Research, 2005, 110, . Bubble and Temperature Fields in Langmuir Circulation. Lecture Notes in Physics, 2001, , 91-105. 0.7 Testing mechanistic eA—planations of observed correlations between environmental factors and 84 1.4 9 marine fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 208-219. What Determines Seasonal and Interannual Variability of Phytoplankton and Zooplankton in Strongly 2.1 Estuarine Systems?. Estuarine, Coastal and Shelf Science, 2000, 50, 467-488. The Connection between Bubble Size Spectra and Energy Dissipation Rates in the Upper Ocean. Journal 86 1.7 157 of Physical Oceanography, 2000, 30, 2163-2171. Estimating Horizontal Dispersion of Floating Particles in Wind-driven Upper Ocean. Spill Science and Technology Bulletin, 2000, 6, 255-261. Seasonal and internannual variability of estuarine circulation in a box model of the Strait of Georgia 88 1.6 39 and Juan de Fuca strait. Atmosphere - Ocean, 1999, 37, 1-19. Parameterizing particle dispersion in Langmuir circulation. Journal of Geophysical Research, 1999, 104, 3.3 26059-26068 The relationship between oil droplet size and upper ocean turbulence. Marine Pollution Bulletin, 1998, 90 5.0 107

MING LI

⁰ 36, 961-970.

#	Article	IF	CITATIONS
91	A note on hydraulic theory of internal bores. Dynamics of Atmospheres and Oceans, 1998, 28, 1-7.	1.8	19
92	Comment on "Energetics of borelike internal waves―by Frank S. Henyey and Antje Hoering. Journal of Geophysical Research, 1998, 103, 3339-3341.	3.3	4
93	Mixed Layer Deepening Due to Langmuir Circulation. Journal of Physical Oceanography, 1997, 27, 121-132.	1.7	104
94	Is Langmuir Circulation Driven by Surface Waves or Surface Cooling?. Journal of Physical Oceanography, 1995, 25, 64-76.	1.7	48
95	Patterns of Bubble Clouds organized by Langmuir Circulation. Journal of Physical Oceanography, 1995, 25, 1426-1440.	1.7	113
96	Role of Langmuir Circulation in the Deepening of the Ocean Surface Mixed Layer. Science, 1995, 270, 1955-1957.	12.6	84
97	Oil dispersion by turbulence and coherent circulations. Ocean Engineering, 1994, 21, 575-586.	4.3	25
98	Cell merging and the jet/downwelling ratio in Langmuir circulation. Journal of Marine Research, 1993, 51, 737-769.	0.3	110