
Anthony Ricciardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7895166/publications.pdf Version: 2024-02-01

ANTHONY PICCIAPDI

#	Article	IF	CITATIONS
1	Extinction Rates of North American Freshwater Fauna. Conservation Biology, 1999, 13, 1220-1222.	2.4	1,042
2	Is invasion success explained by the enemy release hypothesis?. Ecology Letters, 2004, 7, 721-733.	3.0	1,015
3	A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts. PLoS Biology, 2014, 12, e1001850.	2.6	648
4	Progress toward understanding the ecological impacts of nonnative species. Ecological Monographs, 2013, 83, 263-282.	2.4	543
5	Assisted colonization is not a viable conservation strategy. Trends in Ecology and Evolution, 2009, 24, 248-253.	4.2	484
6	Recent mass invasion of the North American Great Lakes by Ponto–Caspian species. Trends in Ecology and Evolution, 2000, 15, 62-65.	4.2	467
7	Microplastic pollution in St. Lawrence River sediments. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71, 1767-1771.	0.7	415
8	Are Modern Biological Invasions an Unprecedented Form of Global Change?. Conservation Biology, 2007, 21, 329-336.	2.4	410
9	Facilitative interactions among aquatic invaders: is an "invasional meltdown" occurring in the Great Lakes?. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 2513-2525.	0.7	401
10	Predicting the identity and impact of future biological invaders: a priority for aquatic resource management. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 1759-1765.	0.7	391
11	Impending extinctions of North American freshwater mussels (Unionoida) following the zebra mussel (Dreissena polymorpha) invasion. Journal of Animal Ecology, 1998, 67, 613-619.	1.3	358
12	Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities. Trends in Ecology and Evolution, 2017, 32, 464-474.	4.2	312
13	OVERLAND DISPERSAL OF AQUATIC INVASIVE SPECIES: A RISK ASSESSMENT OF TRANSIENT RECREATIONAL BOATING. , 2001, 11, 1789-1799.		310
14	Defining the Impact of Nonâ€Native Species. Conservation Biology, 2014, 28, 1188-1194.	2.4	308
15	Ecological Impacts of Alien Species: Quantification, Scope, Caveats, and Recommendations. BioScience, 2015, 65, 55-63.	2.2	301
16	Patterns of invasion in the Laurentian Great Lakes in relation to changes in vector activity. Diversity and Distributions, 2006, 12, 425-433.	1.9	294
17	Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecology Letters, 2004, 7, 781-784.	3.0	259
18	Tackling Invasive Alien Species in Europe: the top 20 issues. Management of Biological Invasions, 2014, 5, 1-20.	0.5	248

#	Article	IF	CITATIONS
19	Weight-to-weight conversion factors for marine benthic macroinvertebrates. Marine Ecology - Progress Series, 1998, 163, 245-251.	0.9	244
20	The invasiveness of an introduced species does not predict its impact. Biological Invasions, 2007, 9, 309-315.	1.2	233
21	The role of the zebra mussel (<i>Dreissena polymorpha</i>) in structuring macroinvertebrate communities on hard substrata. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 2596-2608.	0.7	230
22	Alien versus native species as drivers of recent extinctions. Frontiers in Ecology and the Environment, 2019, 17, 203-207.	1.9	220
23	Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biological Invasions, 2014, 16, 735-753.	1.2	214
24	Predicting the impacts of an introduced species from its invasion history: an empirical approach applied to zebra mussel invasions. Freshwater Biology, 2003, 48, 972-981.	1.2	199
25	Impacts of <i>Dreissena</i> invasions on benthic macroinvertebrate communities: a metaâ€analysis. Diversity and Distributions, 2007, 13, 155-165.	1.9	179
26	Invader Relative Impact Potential: a new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. Journal of Applied Ecology, 2017, 54, 1259-1267.	1.9	165
27	Bridging Troubled Waters: Biological Invasions, Transoceanic Shipping, and the Laurentian Great Lakes. BioScience, 2004, 54, 919.	2.2	157
28	A conceptual map of invasion biology: Integrating hypotheses into a consensus network. Global Ecology and Biogeography, 2020, 29, 978-991.	2.7	150
29	Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biological Invasions, 2013, 15, 837-846.	1.2	149
30	Invasion risks posed by the aquarium trade and live fish markets on the Laurentian Great Lakes. Biodiversity and Conservation, 2005, 14, 1365-1381.	1.2	148
31	Misleading criticisms of invasion science: a field guide. Diversity and Distributions, 2013, 19, 1461-1467.	1.9	141
32	ls invasion history a useful tool for predicting the impacts of the world's worst aquatic invasive species?. , 2011, 21, 189-202.		126
33	Global range expansion of the Asian mussel <i>Limnoperna fortunei</i> (Mytilidae): Another fouling threat to freshwater systems. Biofouling, 1998, 13, 97-106.	0.8	125
34	Origin matters: alien consumers inflict greater damage on prey populations than do native consumers. Diversity and Distributions, 2013, 19, 988-995.	1.9	125
35	Toward a Global Information System for Invasive Species. BioScience, 2000, 50, 239.	2.2	122
36	Reassessment of Species Invasions Concepts: The Great Lakes Basin as a Model. Biological Invasions, 2001, 3, 405-416.	1.2	111

#	Article	IF	CITATIONS
37	Distribution, abundance, and diversity of microplastics in the upper St. Lawrence River. Environmental Pollution, 2020, 260, 113994.	3.7	109
38	Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp. , 2011, 21, 203-213.		108
39	Impact of the(<i>Dreissena</i>) invasion on native unionid bivalves in the upper St. Lawrence River. Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53, 1434-1444.	0.7	106
40	Global patterns of macroinvertebrate biomass in marine intertidal communities. Marine Ecology - Progress Series, 1999, 185, 21-35.	0.9	105
41	Does Darwin's Naturalization Hypothesis Explain Fish Invasions?. Biological Invasions, 2006, 8, 1403-1407.	1.2	104
42	Four priority areas to advance invasion science in the face of rapid environmental change. Environmental Reviews, 2021, 29, 119-141.	2.1	98
43	Should Biological Invasions Be Managed as Natural Disasters?. BioScience, 2011, 61, 312-317.	2.2	96
44	Aerial exposure tolerance off zebra and quagga mussels (Bivalvia: Dreissenidae): implications for overland dispersal. Canadian Journal of Fisheries and Aquatic Sciences, 1995, 52, 470-477.	0.7	93
45	Predatorâ€free space, functional responses and biological invasions. Functional Ecology, 2015, 29, 377-384.	1.7	91
46	Predicting the intensity and impact of <i>Dreissena</i> infestation on native unionid bivalves from <i>Dreissena</i> field density. Canadian Journal of Fisheries and Aquatic Sciences, 1995, 52, 1449-1461.	0.7	89
47	Predicting the number of ecologically harmful exotic species in an aquatic system. Diversity and Distributions, 2008, 14, 374-380.	1.9	89
48	Functional responses can unify invasion ecology. Biological Invasions, 2017, 19, 1667-1672.	1.2	86
49	Fortune favours the bold: a higher predator reduces the impact of a native but not an invasive intermediate predator. Journal of Animal Ecology, 2014, 83, 693-701.	1.3	81
50	The future of species invasions in the Great Lakes-St. Lawrence River basin. Journal of Great Lakes Research, 2015, 41, 96-107.	0.8	81
51	Influence of physicochemical factors on the distribution and biomass of invasive mussels (Dreissena) Tj ETQq1 Aquatic Sciences, 2005, 62, 1953-1962.	1 0.784314 0.7	4 rgBT /Overlo 77
52	Assessing species invasions as a cause of extinction. Trends in Ecology and Evolution, 2004, 19, 619-619.	4.2	70
53	Ecological impacts of invasive alien species along temperature gradients: testing the role of environmental matching. Ecological Applications, 2015, 25, 706-716.	1.8	70
54	The Invasion Ecology of Sleeper Populations: Prevalence, Persistence, and Abrupt Shifts. BioScience, 2021, 71, 357-369.	2.2	63

#	Article	IF	CITATIONS
55	On the contextâ€dependent scaling of consumer feeding rates. Ecology Letters, 2016, 19, 668-678.	3.0	62
56	Invasion Science and the Global Spread of SARS-CoV-2. Trends in Ecology and Evolution, 2020, 35, 642-645.	4.2	62
57	Assisted colonization: good intentions and dubious risk assessment. Trends in Ecology and Evolution, 2009, 24, 476-477.	4.2	60
58	The exponential growth of invasive species denialism. Biological Invasions, 2018, 20, 549-553.	1.2	60
59	Freshwater sponges (Porifera, Spongillidae) of eastern Canada: taxonomy, distribution, and ecology. Canadian Journal of Zoology, 1993, 71, 665-682.	0.4	54
60	Exotic species replacement: shifting dominance of dreissenid mussels in the Soulanges Canal, upper St. Lawrence River, Canada. Journal of the North American Benthological Society, 2004, 23, 507-514.	3.0	54
61	Global determinants of prey naiveté to exotic predators. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192978.	1.2	53
62	Environmental heterogeneity limits the local dominance of an invasive freshwater crustacean. Biological Invasions, 2009, 11, 2095-2105.	1.2	49
63	Negative competitive effects of invasive plants change with time since invasion. Ecosphere, 2015, 6, 1-14.	1.0	49
64	Taxonomy, distribution, and ecology of the freshwater bryozoans (Ectoprocta) of eastern Canada. Canadian Journal of Zoology, 1994, 72, 339-359.	0.4	46
65	Impacts of the Eurasian round goby (<i>Neogobius melanostomus</i>) on benthic communities in the upper St. Lawrence River. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 469-486.	0.7	45
66	Communityâ€level effects of coâ€occurring native and exotic ecosystem engineers. Freshwater Biology, 2010, 55, 1803-1817.	1.2	43
67	Forecasting the ecological impacts of the Hemimysis anomala invasion in North America: Lessons from other freshwater mysid introductions. Journal of Great Lakes Research, 2012, 38, 7-13.	0.8	40
68	On the RIP: using Relative Impact Potential to assess the ecological impacts of invasive alien species. NeoBiota, 0, 55, 27-60.	1.0	40
69	Physical factors affecting the relative abundance of native and invasive amphipods in the St. Lawrence River. Canadian Journal of Zoology, 2004, 82, 1886-1893.	0.4	39
70	Novel and Disrupted Trophic Links Following Invasion in Freshwater Ecosystems. Advances in Ecological Research, 2017, 57, 55-97.	1.4	38
71	Microplastics in lakes and rivers: an issue of emerging significance to limnology. Environmental Reviews, 2022, 30, 228-244.	2.1	38
72	Assessing the relative potential ecological impacts and invasion risks of emerging and future invasive alien species. NeoBiota, 0, 40, 1-24.	1.0	34

0.7

22

#	Article	IF	CITATIONS
73	Lethal and sublethal effects of sponge overgrowth on introduced dreissenid mussels in the Great Lakes – St. Lawrence River system. Canadian Journal of Fisheries and Aquatic Sciences, 1995, 52, 2695-2703.	0.7	32
74	When does ecosystem engineering cause invasion and species replacement?. Oikos, 2008, 117, 1247-1257.	1.2	32
75	Chaetogaster limnaei (Annelida: Oligochaeta) as a parasite of the zebra mussel Dreissena polymorpha, and the quagga mussel Dreissena bugensis (Mollusca: Bivalvia). Parasitology Research, 1996, 82, 1-7.	0.6	31
76	Impacts of predation by the Eurasian round goby (Neogobius melanostomus) on molluscs in the upper St. Lawrence River. Journal of Great Lakes Research, 2012, 38, 78-89.	0.8	30
77	Ecological Impact of Ponto-Caspian Invaders in the Baltic Sea, European Inland Waters and the Great Lakes: An Inter-Ecosystem Comparison. , 2002, , 412-425.		30
78	Nearshore fish assemblages associated with introduced predatory fishes in lakes. Aquatic Conservation: Marine and Freshwater Ecosystems, 2011, 21, 338-347.	0.9	28
79	A spatioâ€ŧemporal contrast of the predatory impact of an invasive freshwater crustacean. Diversity and Distributions, 2015, 21, 803-812.	1.9	27
80	Invasion costs, impacts, and human agency: response to Sagoff 2020. Conservation Biology, 2020, 34, 1579-1582.	2.4	26
81	Economic costs of invasive bivalves in freshwater ecosystems. Diversity and Distributions, 2022, 28, 1010-1021.	1.9	26
82	Predation on zebra mussels (<i>Dreissena polymorpha</i>) by captive-reared map turtles (<i>Graptemys) Tj ETQ</i>	q0 0 0 rgE 0.4	3T /Overlock 1 25
83	The influence of preâ€settlement and early postâ€settlement processes on the adult distribution and relative dominance of two invasive mussel species. Freshwater Biology, 2014, 59, 1086-1100.	1.2	25
84	Predators vs. alien: differential biotic resistance to an invasive species by two resident predators. NeoBiota, 0, 19, 1-19.	1.0	25
85	Interactions between invasive and native crustaceans: differential functional responses of intraguild predators towards juvenile hetero-specifics. Biological Invasions, 2011, 13, 731-737.	1.2	24
86	Deep impact: <i>in situ</i> functional responses reveal contextâ€dependent interactions between vertically migrating invasive and native mesopredators and shared prey. Freshwater Biology, 2014, 59, 2194-2203.	1.2	24
87	Viewing Emerging Human Infectious Epidemics through the Lens of Invasion Biology. BioScience, 2021, 71, 722-740.	2.2	24
88	Invasive Species. , 2013, , 161-178.		23
89	Ecology of Invasive Alien Invertebrates. , 2015, , 83-91.		23

90 Community interactions affecting the relative abundances of native and invasive amphipods in the St. Lawrence River. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 1111-1118.

#	Article	IF	CITATIONS
91	Predicting zebra mussel fouling on native mussels from physicochemical variables. Freshwater Biology, 2008, 53, 1845-1856.	1.2	22
92	Differential infection of exotic and native freshwater amphipods by a parasitic water mold in the St. Lawrence River. Biological Invasions, 2011, 13, 769-779.	1.2	22
93	Eurasian tench (<i>Tinca tinca</i>): the next Great Lakes invader. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 169-179.	0.7	22
94	Occurrence of chironomid larvae (<i>Paratanytarsus</i> sp.) as commensals of dreissenid mussels (<i>Dreissena polymorpha</i> and <i>D</i> . <i>bugensis</i>). Canadian Journal of Zoology, 1994, 72, 1159-1162.	0.4	21
95	Epiphytic macroinvertebrate communities on Eurasian watermilfoil (Myriophyllum spicatum) and native milfoils Myriophyllum sibericum and Myriophyllum alterniflorum in eastern North America. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 18-30.	0.7	21
96	Tracking marine alien species by ship movements. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5470-5471.	3.3	21
97	Friends of mine: An invasive freshwater mussel facilitates growth of invasive macrophytes and mediates their competitive interactions. Freshwater Biology, 2020, 65, 1063-1072.	1.2	21
98	Transoceanic ships as vectors for nonindigenous freshwater bryozoans. Diversity and Distributions, 2010, 16, 77-83.	1.9	20
99	Low-head dams facilitate Round Goby Neogobius melanostomus invasion. Biological Invasions, 2018, 20, 757-776.	1.2	19
100	Open access solutions for biodiversity journals: Do not replace one problem with another. Diversity and Distributions, 2019, 25, 5-8.	1.9	19
101	Distribution, abundance and condition of an invasive bivalve (Corbicula fluminea) along an artificial thermal gradient in the St. Lawrence River. Aquatic Invasions, 2018, 13, 379-392.	0.6	19
102	Are nonâ€native species more likely to become pests? Influence of biogeographic origin on the impacts of freshwater organisms ³ . Frontiers in Ecology and the Environment, 2014, 12, 218-223.	1.9	18
103	Occurrence of the Ponto-Caspian mysid shrimp Hemimysis anomala (Crustacea, Mysida) in the St. Lawrence River. Aquatic Invasions, 2008, 3, 461-464.	0.6	18
104	Influence of conductivity on life history traits of exotic and native amphipods in the St. Lawrence River. Fundamental and Applied Limnology, 2010, 176, 249-262.	0.4	15
105	Porifera. , 2010, , 91-123.		15
106	Vector control reduces the rate of species invasion in the world's largest freshwater ecosystem. Conservation Letters, 2022, 15, .	2.8	14
107	Occurrence and ecology of Lophopodella carteri (Hyatt) and other freshwater Bryozoa in the lower Ottawa River near Montréal, Quebec. Canadian Journal of Zoology, 1991, 69, 1401-1404.	0.4	13
108	Evidence of Recruitment Inhibition of Zebra Mussels (Dreissena polymorpha) by a Freshwater Bryozoan (Lophopodella carteri). Journal of the North American Benthological Society, 1999, 18, 406-413.	3.0	13

#	Article	IF	CITATIONS
109	Dissolved ions mediate body mass gain and predatory response of an invasive fish. Biological Invasions, 2015, 17, 3237-3246.	1.2	13
110	Aggressive interactions between two invasive species: the round goby (Neogobius melanostomus) and the spinycheek crayfish (Orconectes limosus). Biological Invasions, 2017, 19, 425-441.	1.2	13
111	Invasive species denialism revisited: response to Sagoff. Biological Invasions, 2018, 20, 2731-2738.	1.2	13
112	An invasive benthic fish magnifies trophic cascades and alters pelagic communities in an experimental freshwater system. Freshwater Science, 2016, 35, 654-665.	0.9	12
113	EVALUATING THE EFFECTIVENESS OF BALLAST WATER EXCHANGE POLICY IN THE GREAT LAKES. Ecological Applications, 2008, 18, 1321-1323.	1.8	11
114	Are interactions among Ponto-Caspian invaders driving amphipod species replacement in the St. Lawrence River?. Journal of Great Lakes Research, 2009, 35, 392-398.	0.8	11
115	Warming mediates the relationship between plant nutritional properties and herbivore functional responses. Ecology and Evolution, 2016, 6, 8777-8784.	0.8	11
116	Response to Comment on "Opposing Effects of Native and Exotic Herbivores on Plant Invasions". Science, 2006, 313, 298b-298b.	6.0	10
117	Fictional responses from Vonesh et al Biological Invasions, 2017, 19, 1677-1678.	1.2	10
118	Horizon scan of conservation issues for inland waters in Canada. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 869-881.	0.7	10
119	Statoblast morphology and systematics of the freshwater bryozoan <i>Hyalinella orbisperma</i> (Kellicott, 1882). Canadian Journal of Zoology, 1992, 70, 1536-1540.	0.4	9
120	Context-dependent differences in the functional responses of conspecific native and non-native crayfishes. NeoBiota, 0, 54, 71-88.	1.0	9
121	Restoration science does not need redefinition. Nature Ecology and Evolution, 2018, 2, 916-916.	3.4	8
122	Resolution of the Taxonomic Status of the Freshwater Sponges Eunapius mackayi, E. igloviformis, and Spongilla johanseni (Porifera: Spongillidae). Transactions of the American Microscopical Society, 1993, 112, 262.	0.3	7
123	PORIFERA11The preparation of this chapter was supported by several grants from the National Science Foundation. We thank Janet Blair, Joan Elias, Susan Knight, and Yolanda Lukaziewski for their assistance in its preparation , 2001, , 97-133.		7
124	When did the discovery rate for invasive species in the North American Great Lakes accelerate?. BioScience, 2005, 55, 4.	2.2	7
125	Fauna in decline: First do no harm. Science, 2014, 345, 884-884.	6.0	7

<i>Spongilla heterosclerifera</i> Smith, 1918 is an interspecific freshwater sponge mixture (Porifera,) Tj ETQq0 0 0 og BT /Overlock 10 Tf Overlock 10 Tf

#	Article	IF	CITATIONS
127	Wetland edges as peak refugia from an introduced piscivore. Aquatic Conservation: Marine and Freshwater Ecosystems, 2013, 23, 646-655.	0.9	6
128	Disentangling the influence of abiotic variables and a non-native predator on freshwater community structure. Ecosphere, 2015, 6, art285.	1.0	6
129	Acclimation by invasive mussels: spatiotemporal variation in phenotypic response to turbidity. Freshwater Science, 2017, 36, 325-337.	0.9	6
130	Abiotic and biotic correlates of the occurrence, extent and cover of invasive aquatic <i>Elodea nuttallii</i> . Freshwater Biology, 2022, 67, 1559-1570.	1.2	6
131	Are the Great Lakes at risk of new fish invasions from trans-Atlantic shipping?. Journal of Great Lakes Research, 2015, 41, 1172-1175.	0.8	5
132	Planetary Biosecurity: Applying Invasion Science to Prevent Biological Contamination from Space Travel. BioScience, 2022, 72, 247-253.	2.2	5
133	%Comment on "Zebra Mussel Destruction by a Lake Michigan Sponge: Populations, in Vivo31P Nuclear Magnetic Resonance, and Phospholipid Profiling― Environmental Science & Technology, 2000, 34, 1379-1380.	4.6	4
134	Response from Holeck and colleagues. BioScience, 2005, 55, 5.	2.2	4
135	Temperature- and Turbidity-Dependent Competitive Interactions Between Invasive Freshwater Mussels. Bulletin of Mathematical Biology, 2016, 78, 353-380.	0.9	4
136	Predatory behaviour of an invasive amphipod in response to varying conspecific densities under higher-order predation risk. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 131-140.	0.7	4
137	The influence of warming on the biogeographic and phylogenetic dependence of herbivore–plant interactions. Ecology and Evolution, 2019, 9, 2231-2241.	0.8	4
138	Assisted colonization risk assessment. Science, 2021, 372, 925-925.	6.0	4
139	Ecological responses to elevated water temperatures across invasive populations of the round goby (<i>Neogobius melanostomus</i>) in the Great Lakes basin. Canadian Journal of Fisheries and Aquatic Sciences, 2022, 79, 277-288.	0.7	4
140	Antarctica Invaded. Science, 2008, 319, 409-409.	6.0	3
141	Invasion Science: Looking Forward Rather Than Revisiting Old Ground – A Reply to Zenni et al Trends in Ecology and Evolution, 2017, 32, 809-810.	4.2	3
142	Gimme Shelter: differential utilisation and propagule creation of invasive macrophytes by native caddisfly larvae. Biological Invasions, 2021, 23, 95-109.	1.2	3
143	Reexamination of Corvospongilla novaeterrae (Porifera, Spongillidae), an environmentally restricted freshwater sponge from eastern Canada. Canadian Journal of Zoology, 1993, 71, 1954-1962.	0.4	2
144	Cryptic invaders: nonindigenous and cryptogenic freshwater Bryozoa and Entoprocta in the St. Lawrence River. Biological Invasions, 2016, 18, 1737-1744.	1.2	2

#	Article	IF	CITATIONS
145	Biological Invasions Simply Explained. BioScience, 2014, 64, 154-155.	2.2	1
146	OVERLAND DISPERSAL OF AQUATIC INVASIVE SPECIES: A RISK ASSESSMENT OF TRANSIENT RECREATIONAL BOATING. , 2001, 11, 1789.		1
147	Foreword to Chapter Three. , 2020, , 53-59.		1
148	Effects of substrate and elevated temperature on the growth and feeding efficiency of an invasive cyprinid fish, Tench (Tinca tinca). Biological Invasions, 0, , .	1.2	1
149	Reply from A. Ricciardi and H.J. MacIsaac. Trends in Ecology and Evolution, 2000, 15, 248-249.	4.2	0
150	Biological Conveyor Belts. Conservation Biology, 2004, 18, 1699-1700.	2.4	0
151	Rapid Evolutionary Change in Homogocene. Conservation Biology, 2005, 19, 1672-1673.	2.4	0
152	Corrigendum to "The Future of Species Invasions in the Great Lakes-St. Lawrence River Basin―[J. Great Lakes Res. 41 314–314]. Journal of Great Lakes Research, 2015, 41, 197.	0.8	0
153	Consequences of consumer origin and omnivory on stability in experimental food web modules. Freshwater Biology, 2019, 64, 1867-1874.	1.2	0
154	Foreword to Chapter Six. , 2020, , 147-152.		0
155	Foreword to Chapter Two. , 2020, , 31-35.		0
156	Foreword to Chapter Five. , 2020, , 117-124.		0
157	Foreword to Chapter Seven. , 2020, , 169-174.		Ο