
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7894889/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nickel Catalysts for C1 Reactions: Recollections from a Career in Heterogeneous Catalysis. Topics in Catalysis, 2021, 64, 896-906.                                                                                                             | 1.3  | 1         |
| 2  | Towards Sustainable Production of Formic Acid. ChemSusChem, 2018, 11, 821-836.                                                                                                                                                                 | 3.6  | 257       |
| 3  | Heterogeneous catalysts for hydrogenation of CO <sub>2</sub> and bicarbonates to formic acid and formates. Catalysis Reviews - Science and Engineering, 2018, 60, 566-593.                                                                     | 5.7  | 113       |
| 4  | Formic acid decomposition over palladium based catalysts doped by potassium carbonate. Catalysis<br>Today, 2016, 259, 453-459.                                                                                                                 | 2.2  | 38        |
| 5  | Hydrogen production from formic acid vapour over a Pd/C catalyst promoted by potassium salts:<br>Evidence for participation of buffer-like solution in the pores of the catalyst. Applied Catalysis B:<br>Environmental, 2014, 160-161, 35-43. | 10.8 | 67        |
| 6  | Pt nanoclusters stabilized by N-doped carbon nanofibers for hydrogen production from formic acid.<br>Journal of Catalysis, 2013, 307, 94-102.                                                                                                  | 3.1  | 126       |
| 7  | Potassium-Doped Ni–MgO–ZrO2 Catalysts for Dry Reforming of Methane to Synthesis Gas. Topics in<br>Catalysis, 2013, 56, 1686-1694.                                                                                                              | 1.3  | 10        |
| 8  | Supported Pd Catalysts Prepared via Colloidal Method: The Effect of Acids. ACS Catalysis, 2013, 3, 2341-2352.                                                                                                                                  | 5.5  | 43        |
| 9  | Vapour phase formic acid decomposition over PdAu/γ-Al2O3 catalysts: Effect of composition of metallic particles. Journal of Catalysis, 2013, 299, 171-180.                                                                                     | 3.1  | 45        |
| 10 | Improved hydrogen production from formic acid on a Pd/C catalyst doped by potassium. Chemical Communications, 2012, 48, 4184.                                                                                                                  | 2.2  | 102       |
| 11 | The effect of potassium on the activity and stability of Ni–MgO–ZrO2 catalysts for the dry reforming of methane to give synthesis gas. Catalysis Today, 2011, 178, 132-136.                                                                    | 2.2  | 59        |
| 12 | Vapour phase hydrogenation of olefins by formic acid over a Pd/C catalyst. Catalysis Today, 2011, 163, 42-46.                                                                                                                                  | 2.2  | 56        |
| 13 | Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review. Catalysis Today, 2011, 171, 1-13.                                                                                                                       | 2.2  | 526       |
| 14 | Transformation of CH4 and liquid fuels into syngas on monolithic catalysts. Fuel, 2010, 89, 1230-1240.                                                                                                                                         | 3.4  | 36        |
| 15 | Hydrogen from formic acid decomposition over Pd and Au catalysts. Catalysis Today, 2010, 154, 7-12.                                                                                                                                            | 2.2  | 206       |
| 16 | Nanocomposite catalysts for internal steam reforming of methane and biofuels in solid oxide fuel<br>cells: Design and performance. Catalysis Today, 2009, 146, 132-140.                                                                        | 2.2  | 36        |
| 17 | The use of copper catalysts for the selective reduction of NO with methanol. Catalysis Today, 2008, 137, 146-156.                                                                                                                              | 2.2  | 4         |
| 18 | Pt-Supported Nanocrystalline Ceria-Zirconia Doped with La, Pr or Gd: Factors Controlling Syngas<br>Generation in Partial Oxidation/Autothermal Reforming of Methane or Oxygenates. Solid State<br>Phenomena, 2007, 128, 239-248.               | 0.3  | 30        |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The preparation and properties of coprecipitated Cu–Zr–Y and Cu–Zr–La catalysts used for the steam reforming of methanol. Catalysis Today, 2007, 127, 291-294.                         | 2.2 | 45        |
| 20 | Transient studies of carbon dioxide reforming of methane over Pt/ZrO2 and Pt/Al2O3. Catalysis Today, 2006, 115, 191-198.                                                               | 2.2 | 85        |
| 21 | The synthesis by deposition–precipitation of porous γ-alumina catalyst supports on glass substrates compatible with microreactor geometries. Catalysis Today, 2005, 110, 53-57.        | 2.2 | 11        |
| 22 | Natural gas reforming and CO2 mitigation. Catalysis Today, 2005, 100, 151-158.                                                                                                         | 2.2 | 192       |
| 23 | Title is missing!. Kinetics and Catalysis, 2003, 44, 379-400.                                                                                                                          | 0.3 | 46        |
| 24 | A modified robotic system for catalyst preparation by wet or dry impregnation. Catalysis Today, 2003, 81, 369-375.                                                                     | 2.2 | 9         |
| 25 | Catalytic conditioning of organic volatile products produced by peat pyrolysis. Biomass and Bioenergy, 2002, 23, 209-216.                                                              | 2.9 | 28        |
| 26 | The CO2 reforming of the hydrocarbons present in a model gas stream over selected catalysts. Fuel<br>Processing Technology, 2002, 75, 45-53.                                           | 3.7 | 28        |
| 27 | Title is missing!. Catalysis Letters, 2002, 78, 111-114.                                                                                                                               | 1.4 | 14        |
| 28 | Title is missing!. Catalysis Letters, 2002, 80, 123-128.                                                                                                                               | 1.4 | 54        |
| 29 | Investigation of nickel supported catalysts for the upgrading of brown peat derived gasification products. Bioresource Technology, 2001, 80, 111-116.                                  | 4.8 | 37        |
| 30 | Catalytic oxidation of butane to maleic anhydride enhanced yields in the presence of CO2 in the reactor feed. Applied Catalysis A: General, 2001, 210, 271-274.                        | 2.2 | 25        |
| 31 | Supported CuO+Ag/Partially Stabilized Zirconia Catalysts for the Selective Catalytic Reduction of NOx under Lean Burn Conditions. Journal of Catalysis, 2001, 200, 117-130.            | 3.1 | 31        |
| 32 | Supported CuO+Ag/Partially Stabilized Zirconia Catalysts for the Selective Catalytic Reduction of NOx under Lean Burn Conditions. Journal of Catalysis, 2001, 200, 131-139.            | 3.1 | 10        |
| 33 | Differences in the Reactivity of Organo-Nitro and Nitrito Compounds over Al2O3-Based Catalysts<br>Active for the Selective Reduction of NOx. Journal of Catalysis, 2001, 202, 340-353. | 3.1 | 62        |
| 34 | Title is missing!. Topics in Catalysis, 2001, 16/17, 193-197.                                                                                                                          | 1.3 | 29        |
| 35 | Kinetic Study of CO2 Reforming of Propane over Ru/Al2O3. Catalysis Letters, 2001, 75, 175-181.                                                                                         | 1.4 | 20        |
| 36 | Review of literature on catalysts for biomass gasification. Fuel Processing Technology, 2001, 73, 155-173.                                                                             | 3.7 | 1,053     |

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Effect of the silver loading and some other experimental parameters on the selective reduction of NO with C3H6 over Al2O3 and ZrO2-based catalysts. Applied Catalysis B: Environmental, 2001, 30, 163-172. | 10.8 | 73        |
| 38 | Mechanistic differences in the selective reduction of NO by propene over cobalt- and silver-promoted alumina catalysts: kinetic and in situ DRIFTS study. Catalysis Today, 2000, 59, 287-304.              | 2.2  | 167       |
| 39 | Effect of ex situ treatments with SO2 on the activity of a low loading silver–alumina catalyst for the selective reduction of NO and NO2 by propene. Applied Catalysis B: Environmental, 2000, 24, 23-32.  | 10.8 | 99        |
| 40 | Methanol reforming for fuel-cell applications: development of zirconia-containing Cu–Zn–Al<br>catalysts. Catalysis Today, 1999, 51, 521-533.                                                               | 2.2  | 392       |
| 41 | Mechanistic Aspects of the Selective Reduction of NO by Propene over Alumina and Silver–Alumina<br>Catalysts. Journal of Catalysis, 1999, 187, 493-505.                                                    | 3.1  | 341       |
| 42 | Title is missing!. Journal of Porous Materials, 1999, 6, 69-76.                                                                                                                                            | 1.3  | 5         |
| 43 | New insights into the origin of NO2 in the mechanism of the selective catalytic reduction of NO by propene over alumina. Chemical Communications, 1999, , 259-260.                                         | 2.2  | 19        |
| 44 | Mechanistic aspects of the steam reforming of methanol over a CuO/ZnO/ZrO2/Al2O3 catalyst.<br>Chemical Communications, 1999, , 2247-2248.                                                                  | 2.2  | 66        |
| 45 | Possible intermediates in the selective catalytic reduction of NOx: differences in the reactivity of nitro-compounds and tert-butyl nitrite over I³-Al2O3. Chemical Communications, 1999, , 815-816.       | 2.2  | 15        |
| 46 | Preparation and characterization of lanthanum zirconate. Journal of Materials Science, 1998, 33,<br>4517-4523.                                                                                             | 1.7  | 51        |
| 47 | Syngas production from natural gas using ZrO2-supported metals. Catalysis Today, 1998, 42, 225-232.                                                                                                        | 2.2  | 152       |
| 48 | The effect of O2 addition on the carbon dioxide reforming of methane over Pt/ZrO2 catalysts.<br>Catalysis Today, 1998, 46, 203-210.                                                                        | 2.2  | 139       |
| 49 | An In-situ DRIFTS Study of the Mechanism of the CO2 Reforming of CH4 over a Pt/ZrO2 Catalyst.<br>Studies in Surface Science and Catalysis, 1998, 119, 819-824.                                             | 1.5  | 46        |
| 50 | The development of platinum-zirconia catalysts for the CO2 reforming of methane. Studies in Surface<br>Science and Catalysis, 1997, 107, 537-546.                                                          | 1.5  | 37        |
| 51 | Water gas shift membrane reactor for CO2 control in IGCC systems: techno-economic feasibility study. Energy Conversion and Management, 1997, 38, S159-S164.                                                | 4.4  | 102       |
| 52 | TAP Investigations of the CO2Reforming of CH4over Pt/ZrO2. Journal of Catalysis, 1997, 166, 306-314.                                                                                                       | 3.1  | 112       |
| 53 | The development of supported vanadia catalysts for the combined catalytic removal of the oxides of nitrogen and of chlorinated hydrocarbons from flue gases. Catalysis Today, 1997, 35, 97-105.            | 2.2  | 84        |
| 54 | Oxidative dehydrogenation of propane over molybdenum-containing catalysts. Catalysis Today, 1997, 37, 33-42.                                                                                               | 2.2  | 62        |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Roles of supports, Pt loading and Pt dispersion in the oxidation of NO to NO2 and of SO2 to SO3.<br>Applied Catalysis B: Environmental, 1996, 11, 65-79.                                                                                  | 10.8 | 186       |
| 56 | Water-gas shift conversion using a feed with a low steam to carbon monoxide ratio and containing sulphur. Catalysis Today, 1996, 30, 107-118.                                                                                             | 2.2  | 125       |
| 57 | The catalytic conversion of natural gas to useful products. Catalysis Today, 1996, 30, 193-199.                                                                                                                                           | 2.2  | 224       |
| 58 | Nickel catalysts for internal reforming in molten carbonate fuel cells. Applied Catalysis A: General, 1996, 143, 343-365.                                                                                                                 | 2.2  | 36        |
| 59 | Investigation of Alkali Carbonate Transport Toward the Catalyst in Internal Reforming MCFCs.<br>Journal of the Electrochemical Society, 1996, 143, 3186-3191.                                                                             | 1.3  | 10        |
| 60 | Kinetic studies of oxidative coupling of methane on samarium oxide. Catalysis Today, 1995, 24, 285-287.                                                                                                                                   | 2.2  | 12        |
| 61 | Catalysis with membranes or catalytic membranes?. Catalysis Today, 1995, 25, 291-301.                                                                                                                                                     | 2.2  | 20        |
| 62 | The synthesis of alcohols using Cu/ZnO/A12O3 + (Ce or Mn) catalysts. Topics in Catalysis, 1995, 2, 79-89.                                                                                                                                 | 1.3  | 9         |
| 63 | A Low-Energy Ion Scattering (LEIS) Study of the Influence of the Vanadium Concentration on the<br>Activity of Vanadium-Niobium Oxide Catalysts for the Oxidative Dehydrogenation of Propane. Journal<br>of Catalysis, 1995, 157, 584-591. | 3.1  | 42        |
| 64 | Investigation of V2O5/Nb2O5 Catalysts by 51V Solid-State NMR. The Journal of Physical Chemistry, 1995,<br>99, 9169-9175.                                                                                                                  | 2.9  | 34        |
| 65 | Oxidative coupling of methane over K/Ni/Ca oxide and K/Ni/Mg oxide catalysts. Catalysis Today, 1994, 21,<br>401-408.                                                                                                                      | 2.2  | 1         |
| 66 | Oxidative coupling of methane over doped Li/MgO catalysts. Catalysis Today, 1994, 21, 333-340.                                                                                                                                            | 2.2  | 10        |
| 67 | Development and screening of selective catalysts for the synthesis of clean liquid fuels. International<br>Journal of Energy Research, 1994, 18, 185-196.                                                                                 | 2.2  | 9         |
| 68 | Stable Nickel-Containing Catalysts for the Oxidative Coupling of Methane. Journal of Catalysis, 1994,<br>145, 402-408.                                                                                                                    | 3.1  | 58        |
| 69 | The use of niobia in oxidation catalysis. Catalysis Today, 1993, 16, 503-511.                                                                                                                                                             | 2.2  | 46        |
| 70 | The oxidative coupling of methane and the oxidative dehydrogenation of ethane over a niobium promoted lithium doped magnesium oxide catalyst. Catalysis Today, 1993, 16, 537-546.                                                         | 2.2  | 18        |
| 71 | The selective reduction of NOx with NH3 over zirconia-supported vanadia catalysts. Catalysis Today,<br>1993, 16, 237-245.                                                                                                                 | 2.2  | 20        |
| 72 | Influence of preparation method on the performance of vanadia-niobia catalysts for the oxidative dehydrogenation of propane. Catalysis Today, 1993, 16, 513-523.                                                                          | 2.2  | 59        |

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Catalytic control of diesel engine particulate emission: Studies on model reactions over a EuroPt-1<br>(Pt/SiO2) catalyst. Applied Catalysis B: Environmental, 1993, 2, 183-197.       | 10.8 | 46        |
| 74 | The role of tin in Li/Sn/MgO catalysts for the oxidative coupling of methane. Journal of the Chemical Society Chemical Communications, 1992, , 1546.                                   | 2.0  | 19        |
| 75 | Synthesis and characterization of primary alumina, titania and binary membranes. Journal of Materials<br>Science, 1992, 27, 1023-1035.                                                 | 1.7  | 86        |
| 76 | Influence of ethanol washing of the hydrous precursor on the textural and structural properties of zirconia. Journal of Materials Science, 1992, 27, 4890-4898.                        | 1.7  | 57        |
| 77 | TPR and infrared measurements with cu/zno/al2o3 based catalysts for the synthesis of methanol and higher alcohols from co + h2. Catalysis Today, 1992, 12, 481-490.                    | 2.2  | 13        |
| 78 | The synthesis of higher alcohols using modified Cu/ZnO/Al2O3 catalysts. Catalysis Today, 1992, 15, 129-148.                                                                            | 2.2  | 81        |
| 79 | Nitrogen containing species as intermediates in the oxidation of ammonia over silica supported molybdena catalysts. Applied Catalysis A: General, 1992, 86, 165-179.                   | 2.2  | 28        |
| 80 | The effect of addition of a third component on the behaviour of the lithium doped magnesium catalysts for the oxidative dehydrogenation of ethane. Catalysis Today, 1992, 13, 629-634. | 2.2  | 37        |
| 81 | The kinetic and mechanistic aspects of the oxidative dehydrogenation of ethane over Li/Na/MgO catalysts. Catalysis Today, 1992, 13, 201-208.                                           | 2.2  | 19        |
| 82 | Zirconia as a support for catalysts Influence of additives on the thermal stability of the porous texture of monoclinic zirconia. Applied Catalysis, 1991, 71, 363-391.                | 1.1  | 170       |
| 83 | The selective oxidative dehydrogenation of propane over niobium pentoxide. Journal of the Chemical Society Chemical Communications, 1991, , 558.                                       | 2.0  | 29        |
| 84 | TAP reactor investigation of methane coupling over samarium oxide catalysts. Applied Catalysis, 1991, 77, 45-53.                                                                       | 1.1  | 24        |
| 85 | Stabilized tetragonal zirconium oxide as a support for catalysts Evolution of the texture and structure on calcination in static air. Applied Catalysis, 1991, 78, 79-96.              | 1.1  | 139       |
| 86 | The Oxidative Coupling of Methane Over Sm2O3 and La2O3. Studies in Surface Science and Catalysis, 1991, , 117-126.                                                                     | 1.5  | 1         |
| 87 | Valence states of vanadia-on-titania/silica and molybdena-on-silica catalysts after reduction and oxidation. The Journal of Physical Chemistry, 1990, 94, 8598-8603.                   | 2.9  | 10        |
| 88 | Zirconia as a support for catalysts. Applied Catalysis, 1990, 57, 127-148.                                                                                                             | 1.1  | 324       |
| 89 | Oxidative coupling of methane over Ba/CaO catalysts. Applied Catalysis, 1990, 59, 291-309.                                                                                             | 1.1  | 40        |
| 90 | Lithium chemistry of lithium doped magnesium oxide catalysts used in the oxidative coupling of methane. Applied Catalysis, 1990, 58, 131-146.                                          | 1.1  | 54        |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Methane activation - a bibliography. Catalysis Today, 1989, 4, 471-494.                                                                                                                                                                   | 2.2 | 42        |
| 92  | Effect of additives on lithium doped magnesium oxide catalysts used in the oxidative coupling of methane. Applied Catalysis, 1989, 56, 119-135.                                                                                           | 1.1 | 69        |
| 93  | Kinetic and mechanistic aspects of the oxidative coupling of methane over a Li/MgO catalyst. Applied Catalysis, 1989, 52, 131-145.                                                                                                        | 1.1 | 85        |
| 94  | Reaction path of the oxidative coupling of methane over a lithium-doped magnesium oxide catalyst.<br>Applied Catalysis, 1989, 52, 147-156.                                                                                                | 1.1 | 37        |
| 95  | Oxidative coupling of methane over lithium doped magnesium oxide catalysts. Catalysis Today, 1988, 2, 535-545.                                                                                                                            | 2.2 | 82        |
| 96  | The interaction between silver and N2O in relation to the oxidative dehydrogenation of methanol.<br>Journal of Catalysis, 1988, 114, 303-312.                                                                                             | 3.1 | 10        |
| 97  | Studies on the promotion of nickel—alumina coprecipitated catalysts. Applied Catalysis, 1988, 45, 239-256.                                                                                                                                | 1.1 | 13        |
| 98  | Studies on the promotion of nickel—alumina coprecipitated catalysts. Applied Catalysis, 1988, 45, 257-280.                                                                                                                                | 1.1 | 35        |
| 99  | The influence of water on the oxygen–silver interaction and on the oxidative dehydrogenation of methanol. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 1491.                                                         | 1.0 | 8         |
| 100 | Mechanism of the reaction of nitric oxide, ammonia, and oxygen over vanadia catalysts. I. The role of<br>oxygen studied by way of isotopic transients under dilute conditions. The Journal of Physical<br>Chemistry, 1987, 91, 5921-5927. | 2.9 | 150       |
| 101 | The silver-oxygen interaction in relation to oxidative dehydrogenation of methanol. Applied Catalysis, 1987, 31, 291-308.                                                                                                                 | 1.1 | 34        |
| 102 | Selective oxidation of n-butane to maleic anhydride under oxygen-deficient conditions over V-P-O mixed oxides. Applied Catalysis, 1987, 31, 323-337.                                                                                      | 1.1 | 14        |
| 103 | The influence of hydrogen treatment and catalyst morphology on the interaction of oxygen with a silver catalyst. Applied Catalysis, 1987, 34, 329-339.                                                                                    | 1.1 | 29        |
| 104 | Influence of CO2 on the oxidative coupling of methane over a lithium promoted magnesium oxide catalyst. Journal of the Chemical Society Chemical Communications, 1987, , 1433.                                                            | 2.0 | 65        |
| 105 | Mechanism of the reaction of nitric oxide, ammonia, and oxygen over vanadia catalysts. 2. Isotopic<br>transient studies with oxygen-18 and nitrogen-15. The Journal of Physical Chemistry, 1987, 91, 6633-6638.                           | 2.9 | 107       |
| 106 | An X-ray photoelectron spectroscopy study of the influence of hydrogen on the oxygen–silver interaction. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 3161.                                                          | 1.0 | 6         |
| 107 | Infrared investigation of the adsorption and reactions of methanol on a vanadium pentoxide/titania catalyst. Langmuir, 1987, 3, 668-673.                                                                                                  | 1.6 | 28        |
| 108 | The effect of Ni-Al ratio on the properties of coprecipitated nickel-alumina catalysts with high nickel contents. Applied Catalysis, 1986, 27, 41-53.                                                                                     | 1.1 | 43        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The activity of supported vanadium oxide catalysts for the selective reduction of NO with ammonia.<br>Applied Catalysis, 1986, 25, 239-248.                                                                                                                                                                                                            | 1.1 | 100       |
| 110 | The oxidative dehydrogenation of methanol to formaldehyde over silver catalysts in relation to the oxygen-silver interaction. Applied Catalysis, 1986, 23, 385-402.                                                                                                                                                                                    | 1.1 | 75        |
| 111 | The preparation and properties of lanthanum-promoted nickel-alumina catalysts: Structure of the precipitates. Solid State Ionics, 1985, 16, 275-282.                                                                                                                                                                                                   | 1.3 | 4         |
| 112 | The effect of lanthanum additives on the catalytic activities of Ni-Al2O3 coprecipitated catalysts for the methanation of carbon monoxide. Journal of Molecular Catalysis, 1984, 25, 253-262.                                                                                                                                                          | 1.2 | 30        |
| 113 | 8th International congress on catalysis. Applied Catalysis, 1984, 12, 284.                                                                                                                                                                                                                                                                             | 1.1 | 12        |
| 114 | Coprecipitated nickel–alumina catalysts for methanation at high temperature. Part 1.—Chemical<br>composition and structure of the precipitates. Journal of the Chemical Society Faraday Transactions I,<br>1981, 77, 649.                                                                                                                              | 1.0 | 163       |
| 115 | Evidence for the participation of surface carbon in the steam reforming of ethane over nickel catalysts. Journal of the Chemical Society Chemical Communications, 1981, , 751.                                                                                                                                                                         | 2.0 | 3         |
| 116 | The steam reforming of ethane over nickel/alumina catalysts. Faraday Discussions of the Chemical<br>Society, 1981, 72, 157.                                                                                                                                                                                                                            | 2.2 | 13        |
| 117 | Coprecipitated nickel–alumina catalysts for methanation at high temperature. Part 2.—Variation of total and metallic areas as a function of sample composition and method of pretreatment. Journal of the Chemical Society Faraday Transactions I, 1981, 77, 665.                                                                                      | 1.0 | 117       |
| 118 | The effect of sodium on the methanation activity of nickel/alumina coprecipitated catalysts. Applied Catalysis, 1981, 1, 23-29.                                                                                                                                                                                                                        | 1.1 | 31        |
| 119 | A modified kinetic expression for the methanation of carbon monoxide over group VIII metal catalysts.<br>Journal of Catalysis, 1981, 71, 205-208.                                                                                                                                                                                                      | 3.1 | 12        |
| 120 | The Critical Surface Tension of Wool. Textile Reseach Journal, 1979, 49, 34-40.                                                                                                                                                                                                                                                                        | 1.1 | 15        |
| 121 | An investigation of the mechanism of the hydrodesulfurization of thiophene over sulfided<br>Co\$z.sbnd;Mo/Al2O3 catalysts II. The effect of promotion by cobalt on the C\$z.sbnd;S bond cleavage<br>and double-bond hydrogenation/dehydrogenation activities of tetrahydrothiophene and related<br>compounds. Journal of Catalysis, 1979, 56, 363-376. | 3.1 | 44        |
| 122 | Evidence for the participation of surface nickel aluminate sites in the steam reforming of methane over nickel/alumina catalysts. Journal of Catalysis, 1978, 52, 280-290.                                                                                                                                                                             | 3.1 | 133       |
| 123 | Effect of temperature of reduction on the activity and selectivity of a coprecipitated<br>Ni–Al2O3catalyst for the Fischer–Tropsch and methanation reactions. Journal of the Chemical<br>Society Chemical Communications, 1977, , 734-735.                                                                                                             | 2.0 | 20        |
| 124 | The use of differential scanning calorimetry in catalyst studies. The methanation of carbon monoxide over nickel/alumina catalysts. Journal of Catalysis, 1975, 40, 281-285.                                                                                                                                                                           | 3.1 | 22        |
| 125 | Mechanism of the steam reforming of methane over a coprecipitated nickel-alumina catalyst. Journal of the Chemical Society Faraday Transactions I, 1973, 69, 10.                                                                                                                                                                                       | 1.0 | 64        |
| 126 | Contact angle studies of some low energy polymer surfaces. Journal of the Chemical Society Faraday<br>Transactions I, 1972, 68, 1190.                                                                                                                                                                                                                  | 1.0 | 37        |

| #   | Article                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Chemisorption and decomposition of tetramethylsilane over tungsten and iron surfaces. Journal of the Chemical Society Faraday Transactions I, 1972, 68, 221. | 1.0 | 9         |
| 128 | Adsorption of neopentane on tungsten and palladium films. Journal of the Chemical Society Faraday<br>Transactions I, 1972, 68, 914.                          | 1.0 | 4         |
| 129 | The interaction of tetramethylsilane with an electron-emitting tungsten filament. Challenge, 1970, ,<br>1170.                                                | 0.4 | 0         |
| 130 | Kinetics f the dissociation of hydrogen sulphide by irn films. Transactions of the Faraday Society, 1966, 62, 2301.                                          | 0.9 | 6         |
| 131 | Physical adsorption of gases on Pyrex glass Evidence for superactivity. Journal of Catalysis, 1965, 4, 620-624.                                              | 3.1 | 8         |