
Jiangyao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7894798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Research, 2015, 86, 17-24.	11.3	323
2	Metal–organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: recent progress and challenges. Environmental Science: Nano, 2019, 6, 1006-1025.	4.3	245
3	Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops. Environment International, 2015, 77, 85-94.	10.0	157
4	Synthesis and Characterization of Novel Plasmonic Ag/AgX-CNTs (X = Cl, Br, I) Nanocomposite Photocatalysts and Synergetic Degradation of Organic Pollutant under Visible Light. ACS Applied Materials & Interfaces, 2013, 5, 6959-6967.	8.0	144
5	Pollution profiles and health risk assessment of VOCs emitted during e-waste dismantling processes associated with different dismantling methods. Environment International, 2014, 73, 186-194.	10.0	140
6	Synthesis of Carbon Nanotube–Anatase TiO ₂ Sub-micrometer-sized Sphere Composite Photocatalyst for Synergistic Degradation of Gaseous Styrene. ACS Applied Materials & Interfaces, 2012, 4, 5988-5996.	8.0	128
7	Highly efficient visible-light-driven photocatalytic degradation of VOCs by CO2-assisted synthesized mesoporous carbon confined mixed-phase TiO2 nanocomposites derived from MOFs. Applied Catalysis B: Environmental, 2019, 250, 337-346.	20.2	113
8	Visible-light-enhanced photothermocatalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene. Applied Catalysis B: Environmental, 2017, 209, 146-154.	20.2	108
9	Optimization synthesis of carbon nanotubes-anatase TiO2 composite photocatalyst by response surface methodology for photocatalytic degradation of gaseous styrene. Applied Catalysis B: Environmental, 2012, 123-124, 69-77.	20.2	102
10	Adsorption and degradation of model volatile organic compounds by a combined titania–montmorillonite–silica photocatalyst. Journal of Hazardous Materials, 2011, 190, 416-423.	12.4	85
11	OH radicals determined photocatalytic degradation mechanisms of gaseous styrene in TiO2 system under 254 nm versus 185 nm irradiation: Combined experimental and theoretical studies. Applied Catalysis B: Environmental, 2019, 257, 117912.	20.2	84
12	Photocatalytic degradation mechanism of gaseous styrene over Au/TiO2@CNTs: Relevance of superficial state with deactivation mechanism. Applied Catalysis B: Environmental, 2020, 272, 118969.	20.2	84
13	Enhanced visible-light photocatalytic activity to volatile organic compounds degradation and deactivation resistance mechanism of titania confined inside a metal-organic framework. Journal of Colloid and Interface Science, 2018, 522, 174-182.	9.4	81
14	In-situ decoration of metallic Bi on BiOBr with exposed (110) facets and surface oxygen vacancy for enhanced solar light photocatalytic degradation of gaseous n-hexane. Chinese Journal of Catalysis, 2020, 41, 1603-1612.	14.0	78
15	VOCs elimination and health risk reduction in e-waste dismantling workshop using integrated techniques of electrostatic precipitation with advanced oxidation technologies. Journal of Hazardous Materials, 2016, 302, 395-403.	12.4	71
16	The synergic degradation mechanism and photothermocatalytic mineralization of typical VOCs over PtCu/CeO2 ordered porous catalysts under simulated solar irradiation. Journal of Catalysis, 2019, 370, 88-96.	6.2	69
17	<i>In situ</i> growth of well-aligned Ni-MOF nanosheets on nickel foam for enhanced photocatalytic degradation of typical volatile organic compounds. Nanoscale, 2020, 12, 9462-9470.	5.6	66
18	Micro/nano-bubble assisted synthesis of Au/TiO ₂ @CNTs composite photocatalyst for photocatalytic degradation of gaseous styrene and its enhanced catalytic mechanism. Environmental Science: Nano, 2019, 6, 948-958.	4.3	62

JIANGYAO CHEN

#	Article	IF	CITATIONS
19	Controlled growth of CuO/Cu2O hollow microsphere composites as efficient visible-light-active photocatalysts. Applied Catalysis A: General, 2016, 521, 34-41.	4.3	47
20	Synthesis and characterization of <scp>TiO₂</scp> nanotube photoanode and its application in photoelectrocatalytic degradation of model environmental pharmaceuticals. Journal of Chemical Technology and Biotechnology, 2013, 88, 1488-1497.	3.2	46
21	Enhanced simultaneous PEC eradication of bacteria and antibiotics by facilely fabricated high-activity {001} facets TiO2 mounted onto TiO2 nanotubular photoanode. Water Research, 2016, 101, 597-605.	11.3	46
22	Photocatalytic ozonation mechanism of gaseous <i>n</i> -hexane on MO _x –TiO ₂ –foam nickel composite (M = Cu, Mn, Ag): unveiling the role of ˙OH and Ë™O ₂ ^{â~'} . Environmental Science: Nano, 2019, 6, 959-969.	4.3	46
23	Fabrication of Au/TiO 2 nanowires@carbon fiber paper ternary composite for visible-light photocatalytic degradation of gaseous styrene. Catalysis Today, 2017, 281, 621-629.	4.4	45
24	Synthesis of TiO2 hollow sphere multimer photocatalyst by etching titanium plate and its application to the photocatalytic decomposition of gaseous styrene. Chemical Engineering Journal, 2013, 228, 834-842.	12.7	38
25	Spatial and temporal distribution characteristics and ozone formation potentials of volatile organic compounds from three typical functional areas in China. Environmental Research, 2020, 183, 109141.	7.5	34
26	Superoxide radical enhanced photocatalytic performance of styrene alters its degradation mechanism and intermediate health risk on TiO2/graphene surface. Environmental Research, 2021, 195, 110747.	7.5	27
27	Soft-template assisted synthesis of mesoporous CuO/Cu 2 O composite hollow microspheres as efficient visible-light photocatalyst. Materials Letters, 2016, 182, 47-51.	2.6	26
28	Vapor-phase hydrothermal synthesis of rutile TiO2 nanostructured film with exposed pyramid-shaped (1 1 1) surface and superiorly photoelectrocatalytic performance. Journal of Colloid and Interface Science, 2014, 429, 53-61.	9.4	24
29	Mechanism of atmospheric organic amines reacted with ozone and implications for the formation of secondary organic aerosols. Science of the Total Environment, 2020, 737, 139830.	8.0	23
30	Cutting down on the ozone and SOA formation as well as health risks of VOCs emitted from e-waste dismantlement by integration technique. Journal of Environmental Management, 2019, 249, 107755.	7.8	22
31	Theoretical investigation on the adsorption configuration and •OH-initiated photocatalytic degradation mechanism of typical atmospheric VOCs styrene onto (TiO2)n clusters. Scientific Reports, 2015, 5, 15059.	3.3	20
32	Oxygen Isotope Tracing Study to Directly Reveal the Role of O ₂ and H ₂ O in the Photocatalytic Oxidation Mechanism of Gaseous Monoaromatics. Environmental Science & Technology, 2021, 55, 16617-16626.	10.0	17
33	Enhanced H-abstraction contribution for oxidation of xylenes via mineral particles: Implications for particulate matter formation and human health. Environmental Research, 2020, 186, 109568.	7.5	16
34	Enhanced uptake of glyoxal at the acidic nanoparticle interface: implications for secondary organic aerosol formation. Environmental Science: Nano, 2020, 7, 1126-1135.	4.3	16
35	Solar light induced transformation mechanism of allyl alcohol to monocarbonyl and dicarbonyl compounds on different TiO2: A combined experimental and theoretical investigation. Chemosphere, 2019, 232, 287-295.	8.2	11
36	Reactor characterization and primary application of a state of art dual-reactor chamber in the investigation of atmospheric photochemical processes. Journal of Environmental Sciences, 2020, 98, 161-168.	6.1	11

JIANGYAO CHEN

#	Article	IF	CITATIONS
37	Atomically dispersed Pd sites on Ti-SBA-15 for efficient catalytic combustion of typical gaseous VOCs. Environmental Science: Nano, 2021, 8, 3735-3745.	4.3	11
38	Can Silica Particles Reduce Air Pollution by Facilitating the Reactions of Aliphatic Aldehyde and NO ₂ ?. Journal of Physical Chemistry A, 2015, 119, 11376-11383.	2.5	10
39	Mechanism of the atmospheric chemical transformation of acetylacetone and its implications in night-time second organic aerosol formation. Science of the Total Environment, 2020, 720, 137610.	8.0	9
40	Assessing the role of mineral particles in the atmospheric photooxidation of typical carbonyl compound. Journal of Environmental Sciences, 2021, 105, 56-63.	6.1	3
41	Atomic-level insight into effect of substrate concentration and relative humidity on photocatalytic degradation mechanism of gaseous styrene. Chemosphere, 2022, 291, 133074.	8.2	2
42	The underappreciated role of monocarbonyl-dicarbonyl interconversion in secondary organic aerosol formation during photochemical oxidation of m-xylene. Science of the Total Environment, 2022, 814, 152575.	8.0	0
43	Competing pathways of cresol formation in toluene photooxidation: OH-toluene adducts react with NO2 or with O2?. Journal of Environmental Sciences, 2022, 114, 211-220.	6.1	Ο
44	Detection of excited triplet species from photolysis of carbonyls: Direct evidence for single oxygen formation in atmospheric environment. Science of the Total Environment, 2022, 837, 155464.	8.0	0