
Ian Maze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7894592/publications.pdf Version: 2024-02-01

LANI MAZE

#	Article	IF	CITATIONS
1	Histone H3 dopaminylation in ventral tegmental area underlies heroin-induced transcriptional and behavioral plasticity in male rats. Neuropsychopharmacology, 2022, 47, 1776-1783.	2.8	17
2	Chromatin profiling in human neurons reveals aberrant roles for histone acetylation and BET family proteins in schizophrenia. Nature Communications, 2022, 13, 2195.	5.8	13
3	Epigenetics of Drug Addiction. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a040253.	2.9	21
4	Histone H3Q5 serotonylation stabilizes H3K4 methylation and potentiates its readout. Proceedings of the United States of America, 2021, 118, .	3.3	27
5	Extracellular histones, a new class of inhibitory molecules of CNS axonal regeneration. Brain Communications, 2021, 3, fcab271.	1.5	8
6	T9. EPIGENETIC PROFILING IN SCHIZOPHRENIA DERIVED HUMAN INDUCED PLURIPOTENT STEM CELLS (HIPSCS) AND NEURONS. Schizophrenia Bulletin, 2020, 46, S234-S234.	2.3	0
7	Circuit-specific hippocampal ΔFosB underlies resilience to stress-induced social avoidance. Nature Communications, 2020, 11, 4484.	5.8	39
8	Nothing Is Yet Set in (Hi)stone: Novel Post-Translational Modifications Regulating Chromatin Function. Trends in Biochemical Sciences, 2020, 45, 829-844.	3.7	63
9	Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking. Science, 2020, 368, 197-201.	6.0	152
10	Chromatin regulation in complex brain disorders. Current Opinion in Behavioral Sciences, 2019, 25, 57-65.	2.0	20
11	Stress resilience is promoted by a Zfp189-driven transcriptional network in prefrontal cortex. Nature Neuroscience, 2019, 22, 1413-1423.	7.1	78
12	An emerging perspective on â€~histone code' mediated regulation of neural plasticity and disease. Current Opinion in Neurobiology, 2019, 59, 157-163.	2.0	18
13	Epigenetic Regulation of Hippocampal <i>Fosb</i> Expression Controls Behavioral Responses to Cocaine. Journal of Neuroscience, 2019, 39, 8305-8314.	1.7	24
14	Knockdown of the histone di-methyltransferase G9a in nucleus accumbens shell decreases cocaine self-administration, stress-induced reinstatement, and anxiety. Neuropsychopharmacology, 2019, 44, 1370-1376.	2.8	29
15	Histone Crotonylation Makes Its Mark in Depression Research. Biological Psychiatry, 2019, 85, 616-618.	0.7	7
16	Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature, 2019, 567, 535-539.	13.7	292
17	Translational Molecular Approaches in Substance Abuse Research. Handbook of Experimental Pharmacology, 2019, 258, 31-60.	0.9	5
18	Cell-type-specific role for nucleus accumbens neuroligin-2 in depression and stress susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1111-1116.	3.3	61

Ian Maze

#	Article	IF	CITATIONS
19	Histone turnover and chromatin accessibility: Critical mediators of neurological development, plasticity, and disease. BioEssays, 2016, 38, 410-419.	1.2	25
20	Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility. Neuron, 2016, 90, 969-983.	3.8	272
21	Histone arginine methylation in cocaine action in the nucleus accumbens. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9623-9628.	3.3	52
22	Aberrant H3.3 dynamics in NAc promote vulnerability to depressive-like behavior. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12562-12567.	3.3	44
23	Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nature Communications, 2015, 6, 7062.	5.8	356
24	ATRX tolerates activity-dependent histone H3 methyl/phos switching to maintain repetitive element silencing in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6820-6827.	3.3	49
25	Critical Role of Histone Turnover in Neuronal Transcription and Plasticity. Neuron, 2015, 87, 77-94.	3.8	257
26	ACF chromatin-remodeling complex mediates stress-induced depressive-like behavior. Nature Medicine, 2015, 21, 1146-1153.	15.2	83
27	Chronic cocaine-regulated epigenomic changes in mouse nucleus accumbens. Genome Biology, 2014, 15, R65.	13.9	151
28	Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nature Reviews Genetics, 2014, 15, 259-271.	7.7	285
29	C9a influences neuronal subtype specification in striatum. Nature Neuroscience, 2014, 17, 533-539.	7.1	78
30	ΔFosB Induction in Prefrontal Cortex by Antipsychotic Drugs is Associated with Negative Behavioral Outcomes. Neuropsychopharmacology, 2014, 39, 538-544.	2.8	23
31	Analytical tools and current challenges in the modern era of neuroepigenomics. Nature Neuroscience, 2014, 17, 1476-1490.	7.1	100
32	Epigenetic Mechanisms of Drug Addiction Vulnerability. , 2014, , 441-462.		0
33	Histone Regulation in the CNS: Basic Principles of Epigenetic Plasticity. Neuropsychopharmacology, 2013, 38, 3-22.	2.8	118
34	Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nature Neuroscience, 2013, 16, 434-440.	7.1	145
35	diffReps: Detecting Differential Chromatin Modification Sites from ChIP-seq Data with Biological Replicates. PLoS ONE, 2013, 8, e65598.	1.1	355
36	Morphine Epigenomically Regulates Behavior through Alterations in Histone H3 Lysine 9 Dimethylation in the Nucleus Accumbens. Journal of Neuroscience, 2012, 32, 17454-17464.	1.7	115

Ian Maze

#	Article	IF	CITATIONS
37	Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons. Nature Neuroscience, 2012, 15, 891-896.	7.1	160
38	Epigenetic Mechanisms of Drug Addiction. Research and Perspectives in Neurosciences, 2012, , 145-160.	0.4	1
39	A Role for Repressive Histone Methylation in Cocaine-Induced Vulnerability to Stress. Neuron, 2011, 71, 656-670.	3.8	245
40	The epigenetic landscape of addiction. Annals of the New York Academy of Sciences, 2011, 1216, 99-113.	1.8	190
41	Behavioral epigenetics. Annals of the New York Academy of Sciences, 2011, 1226, 14-33.	1.8	109
42	Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3035-3040.	3.3	179
43	Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nature Neuroscience, 2010, 13, 1137-1143.	7.1	553
44	Serum Response Factor Promotes Resilience to Chronic Social Stress through the Induction of ΔFosB. Journal of Neuroscience, 2010, 30, 14585-14592.	1.7	81
45	Essential Role of the Histone Methyltransferase G9a in Cocaine-Induced Plasticity. Science, 2010, 327, 213-216.	6.0	581
46	Antidepressant Effect of Optogenetic Stimulation of the Medial Prefrontal Cortex. Journal of Neuroscience, 2010, 30, 16082-16090.	1.7	542
47	Transcriptional Mechanisms Underlying Addiction-Related Structural Plasticity. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2010, 10, 219-230.	3.4	19
48	Nuclear Factor κB Signaling Regulates Neuronal Morphology and Cocaine Reward. Journal of Neuroscience, 2009, 29, 3529-3537.	1.7	228
49	Genome-wide Analysis of Chromatin Regulation by Cocaine Reveals a Role for Sirtuins. Neuron, 2009, 62, 335-348.	3.8	371
50	Role of Nuclear Factor κB in Ovarian Hormone-Mediated Stress Hypersensitivity in Female Mice. Biological Psychiatry, 2009, 65, 874-880.	0.7	115
51	Antidepressant Actions of Histone Deacetylase Inhibitors. Journal of Neuroscience, 2009, 29, 11451-11460.	1.7	535
52	ΔFosB Mediates Epigenetic Desensitization of the c- <i>fos</i> Gene After Chronic Amphetamine Exposure. Journal of Neuroscience, 2008, 28, 7344-7349.	1.7	222
53	Histone Deacetylase 5 Epigenetically Controls Behavioral Adaptations to Chronic Emotional Stimuli. Neuron, 2007, 56, 517-529.	3.8	560