Karin Dedek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7894230/publications.pdf Version: 2024-02-01

KADIN DEDEK

#	Article	IF	CITATIONS
1	Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12272-12277.	7.1	241
2	Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. EMBO Journal, 2006, 25, 642-652.	7.8	227
3	Identification of a Common Non-Apoptotic Cell Death Mechanism in Hereditary Retinal Degeneration. PLoS ONE, 2014, 9, e112142.	2.5	191
4	Colocalization of KCNQ1/KCNE channel subunits in the mouse gastrointestinal tract. Pflugers Archiv European Journal of Physiology, 2001, 442, 896-902.	2.8	146
5	Deletion of Connexin45 in Mouse Retinal Neurons Disrupts the Rod/Cone Signaling Pathway between All Amacrine and ON Cone Bipolar Cells and Leads to Impaired Visual Transmission. Journal of Neuroscience, 2005, 25, 566-576.	3.6	146
6	Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. Epilepsy Research, 2003, 54, 21-27.	1.6	118
7	Localization of heterotypic gap junctions composed of connexin45 and connexin36 in the rod pathway of the mouse retina. European Journal of Neuroscience, 2006, 24, 1675-1686.	2.6	82
8	Horizontal cell receptive fields are reduced in connexin57-deficient mice. European Journal of Neuroscience, 2006, 23, 3176-3186.	2.6	77
9	Plasmodium Induces Swelling-activated ClC-2 Anion Channels in the Host Erythrocyte. Journal of Biological Chemistry, 2004, 279, 41444-41452.	3.4	74
10	Ablation of Retinal Horizontal Cells from Adult Mice Leads to Rod Degeneration and Remodeling in the Outer Retina. Journal of Neuroscience, 2012, 32, 10713-10724.	3.6	58
11	Ganglion Cell Adaptability: Does the Coupling of Horizontal Cells Play a Role?. PLoS ONE, 2008, 3, e1714.	2.5	55
12	Differential Regulation of Cone Calcium Signals by Different Horizontal Cell Feedback Mechanisms in the Mouse Retina. Journal of Neuroscience, 2014, 34, 11826-11843.	3.6	52
13	Expression and modulation of connexin30.2, a novel gap junction protein in the mouse retina. Visual Neuroscience, 2010, 27, 91-101.	1.0	50
14	Connexin57 is expressed in dendroâ€dendritic and axoâ€axonal gap junctions of mouse horizontal cells and its distribution is modulated by light. Journal of Comparative Neurology, 2009, 513, 363-374.	1.6	46
15	All amacrine cells discriminate between heterocellular and homocellular locations when assembling connexin36-containing gap junctions. Journal of Cell Science, 2014, 127, 1190-202.	2.0	42
16	Rod and Cone Contributions to Horizontal Cell Light Responses in the Mouse Retina. Journal of Neuroscience, 2008, 28, 6818-6825.	3.6	41
17	Photoelectrical Stimulation of Neuronal Cells by an Organic Semiconductor–Electrolyte Interface. Langmuir, 2016, 32, 8533-8542.	3.5	38
18	A novel type of interplexiform amacrine cell in the mouse retina. European Journal of Neuroscience, 2009, 30, 217-228.	2.6	36

KARIN DEDEK

#	Article	IF	CITATIONS
19	Expression of Pannexin1 in the outer plexiform layer of the mouse retina and physiological impact of its knockout. Journal of Comparative Neurology, 2013, 521, 1119-1135.	1.6	35
20	Subcellular distribution of connexin45 in OFF bipolar cells of the mouse retina. Journal of Comparative Neurology, 2011, 519, 433-450.	1.6	33
21	Inputs Underlying the ON–OFF Light Responses of Type 2 Wide-Field Amacrine Cells in TH::GFP Mice. Journal of Neuroscience, 2011, 31, 4780-4791.	3.6	31
22	Morphology and connectivity of the small bistratified A8 amacrine cell in the mouse retina. Journal of Comparative Neurology, 2015, 523, 1529-1547.	1.6	31
23	Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells. Journal of Neuroscience, 2018, 38, 2015-2028.	3.6	30
24	Cryptochrome 1a localisation in light- and dark-adapted retinae of several migratory and non-migratory bird species: no signs of light-dependent activation. Ethology Ecology and Evolution, 2021, 33, 248-272.	1.4	30
25	Lack of the Sodium-Driven Chloride Bicarbonate Exchanger NCBE Impairs Visual Function in the Mouse Retina. PLoS ONE, 2012, 7, e46155.	2.5	28
26	Organic Photovoltaic Sensors for Photocapacitive Stimulation of Voltageâ€Gated Ion Channels in Neuroblastoma Cells. Advanced Functional Materials, 2019, 29, 1805177.	14.9	27
27	Differential Distribution of Retinal Ca2+/Calmodulin-Dependent Kinase II (CaMKII) Isoforms Indicates CaMKII-β and -δ as Specific Elements of Electrical Synapses Made of Connexin36 (Cx36). Frontiers in Molecular Neuroscience, 2017, 10, 425.	2.9	22
28	Type 2 wideâ€field amacrine cells in <scp>TH</scp> :: <scp>GFP</scp> mice show a homogenous synapse distribution and contact small ganglion cells. European Journal of Neuroscience, 2015, 41, 734-747.	2.6	21
29	Connexin30.2: In Vitro Interaction with Connexin36 in HeLa Cells and Expression in All Amacrine Cells and Intrinsically Photosensitive Ganglion Cells in the Mouse Retina. Frontiers in Molecular Neuroscience, 2016, 9, 36.	2.9	21
30	A novel isoform of cryptochrome 4 (Cry4b) is expressed in the retina of a night-migratory songbird. Scientific Reports, 2020, 10, 15794.	3.3	21
31	Testing for a Gap Junction-Mediated Bystander Effect in Retinitis Pigmentosa: Secondary Cone Death Is Not Altered by Deletion of Connexin36 from Cones. PLoS ONE, 2013, 8, e57163.	2.5	21
32	The absence of Complexin 3 and Complexin 4 differentially impacts the ON and OFF pathways in mouse retina. European Journal of Neuroscience, 2012, 36, 2470-2481.	2.6	20
33	Cell-Specific Cre Recombinase Expression Allows Selective Ablation of Glutamate Receptors from Mouse Horizontal Cells. PLoS ONE, 2013, 8, e83076.	2.5	20
34	Connexin50 couples axon terminals of mouse horizontal cells by homotypic gap junctions. Journal of Comparative Neurology, 2015, 523, 2062-2081.	1.6	20
35	Morphological and physiological properties of enhanced green fluorescent protein (<scp>EGFP</scp>)â€expressing wideâ€field amacrine cells in the <scp>C</scp> h <scp>AT</scp> â€ <scp>EGFP</scp> mouse line. European Journal of Neuroscience, 2014, 39, 800-810.	2.6	19
36	Gap Junctions in A8 Amacrine Cells Are Made of Connexin36 but Are Differently Regulated Than Gap Junctions in All Amacrine Cells. Frontiers in Molecular Neuroscience, 2019, 12, 99.	2.9	19

KARIN DEDEK

#	Article	IF	CITATIONS
37	Double Cones and the Diverse Connectivity of Photoreceptors and Bipolar Cells in an Avian Retina. Journal of Neuroscience, 2021, 41, 5015-5028.	3.6	18
38	Expression and Localization of Connexins in the Outer Retina of the Mouse. Journal of Molecular Neuroscience, 2016, 58, 178-192.	2.3	17
39	Expression and Biophysical Characterization of Voltage-Gated Sodium Channels in Axons and Growth Cones of the Regenerating Optic Nerve. , 2010, 51, 1789.		15
40	Defective ceramide synthases in mice cause reduced amplitudes in electroretinograms and altered sphingolipid composition in retina and cornea. European Journal of Neuroscience, 2016, 44, 1700-1713.	2.6	13
41	Localization of Retinal Ca2+/Calmodulin-Dependent Kinase II-β (CaMKII-β) at Bipolar Cell Gap Junctions and Cross-Reactivity of a Monoclonal Anti-CaMKII-β Antibody With Connexin36. Frontiers in Molecular Neuroscience, 2019, 12, 206.	2.9	12
42	Double cones in the avian retina form an oriented mosaic which might facilitate magnetoreception and/or polarized light sensing. Journal of the Royal Society Interface, 2022, 19, 20210877.	3.4	12
43	Rod Bipolar Cells Require Horizontal Cells for Invagination Into the Terminals of Rod Photoreceptors. Frontiers in Cellular Neuroscience, 2019, 13, 423.	3.7	11
44	Localisation of cryptochrome 2 in the avian retina. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 208, 69.	1.6	11
45	Retinal horizontal cells use different synaptic sites for global feedforward and local feedback signaling. Current Biology, 2022, 32, 545-558.e5.	3.9	11
46	Phenotyping of Gap-Junctional Coupling in the Mouse Retina. Methods in Molecular Biology, 2018, 1753, 249-259.	0.9	8
47	Expression of cell markers and transcription factors in the avian retina compared with that in the marmoset retina. Journal of Comparative Neurology, 2021, 529, 3171-3193.	1.6	5
48	Electrophysiological Characterization of GFP-Expressing Cell Populations in the Intact Retina. Journal of Visualized Experiments, 2011, , .	0.3	4
49	Phosphorylation of Connexin36 near the C-terminus switches binding affinities for PDZ-domain and 14–3–3 proteins in vitro. Scientific Reports, 2020, 10, 18378.	3.3	4
50	Synaptic Remodeling in the Cone Pathway After Early Postnatal Horizontal Cell Ablation. Frontiers in Cellular Neuroscience, 2021, 15, 657594.	3.7	4
51	Optical Index Matching, Flexible Electrospun Substrates for Seamless Organic Photocapacitive Sensors. Physica Status Solidi (B): Basic Research, 2021, 258, 2000543.	1.5	2
52	The retinal circuitry for magnetoreception in migratory birds. Neuroforum, 2021, 27, 159-166.	0.3	1