Nicolas Chouin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7893961/publications.pdf

Version: 2024-02-01

430754 454834 32 895 18 30 citations h-index g-index papers 34 34 34 1247 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Targeted Alpha Particle Therapy Remodels the Tumor Microenvironment and Improves Efficacy of Immunotherapy. International Journal of Radiation Oncology Biology Physics, 2022, 112, 790-801.	0.4	8
2	Radiobiology of Targeted Alpha Therapy. , 2022, , 380-403.		O
3	Anti-Tumor Efficacy of PD-L1 Targeted Alpha-Particle Therapy in a Human Melanoma Xenograft Model. Cancers, 2021, 13, 1256.	1.7	6
4	Targeted-Alpha-Therapy Combining Astatine-211 and anti-CD138 Antibody in a Preclinical Syngeneic Mouse Model of Multiple Myeloma Minimal Residual Disease. Cancers, 2020, 12, 2721.	1.7	11
5	SPECT-CT Imaging of Dog Spontaneous Diffuse Large B-Cell Lymphoma Targeting CD22 for the Implementation of a Relevant Preclinical Model for Human. Frontiers in Oncology, 2020, 10, 20.	1.3	O
6	Radioimmunotherapy of Lymphomas. , 2019, , 113-121.		3
7	What is the Best Radionuclide for Immuno-PET of Multiple Myeloma? A Comparison Study Between 89Zr- and 64Cu-Labeled Anti-CD138 in a Preclinical Syngeneic Model. International Journal of Molecular Sciences, 2019, 20, 2564.	1.8	22
8	Re: Tumor Targeting and Three-Dimensional Voxel-Based Dosimetry to Predict Tumor Response, Toxicity, and Survival after Yttrium-90 Resin Microsphere Radioembolization in Hepatocellular Carcinoma. Journal of Vascular and Interventional Radiology, 2019, 30, 2047-2048.	0.2	3
9	Radiolabeled Antibodies Against Müllerian-Inhibiting Substance Receptor, Type II: New Tools for a Theranostic Approach in Ovarian Cancer. Journal of Nuclear Medicine, 2018, 59, 1234-1242.	2.8	15
10	From fixed activities to personalized treatments in radionuclide therapy: lost in translation?. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 152-154.	3.3	34
11	Comparison of Immuno-PET of CD138 and PET imaging with 64CuCl2 and 18F-FDG in a preclinical syngeneic model of multiple myeloma. Oncotarget, 2018, 9, 9061-9072.	0.8	29
12	Promising Scandium Radionuclides for Nuclear Medicine: A Review on the Production and Chemistry up to <i>In Vivo</i> Proofs of Concept. Cancer Biotherapy and Radiopharmaceuticals, 2018, 33, 316-329.	0.7	34
13	The "reset button―revisited: why high activity 131I therapy of advanced differentiated thyroid cancer after dosimetry is advantageous for patients. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 915-917.	3.3	16
14	The conflict between treatment optimization and registration of radiopharmaceuticals with fixed activity posology in oncological nuclear medicine therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 1783-1786.	3.3	48
15	Cure of Human Ovarian Carcinoma Solid Xenografts by Fractionated α-Radioimmunotherapy with ²¹¹ At-MX35-F(ab′) ₂ : Influence of Absorbed Tumor Dose and Effect on Long-Term Survival. Journal of Nuclear Medicine, 2017, 58, 598-604.	2.8	16
16	Assessment of a fully 3D Monte Carlo reconstruction method for preclinical PET with iodine-124. Physics in Medicine and Biology, 2015, 60, 2475-2491.	1.6	4
17	Tumor Immunotargeting Using Innovative Radionuclides. International Journal of Molecular Sciences, 2015, 16, 3932-3954.	1.8	51
18	DNA damage-centered signaling pathways are effectively activated during low dose-rate Auger radioimmunotherapy. Nuclear Medicine and Biology, 2014, 41, e75-e83.	0.3	24

#	Article	IF	Citations
19	A Compartmental Model of Mouse Thrombopoiesis and Erythropoiesis to Predict Bone Marrow Toxicity After Internal Irradiation. Journal of Nuclear Medicine, 2014, 55, 1355-1360.	2.8	2
20	Comparison of ²¹¹ At-PRIT and ²¹¹ At-RIT of Ovarian Microtumors in a Nude Mouse Model. Cancer Biotherapy and Radiopharmaceuticals, 2013, 28, 108-114.	0.7	21
21	Apoptosis and p53 are not involved in the anti-tumor efficacy of 125I-labeled monoclonal antibodies targeting the cell membrane. Nuclear Medicine and Biology, 2013, 40, 471-480.	0.3	28
22	Ex Vivo Activity Quantification in Micrometastases at the Cellular Scale Using the α-Camera Technique. Journal of Nuclear Medicine, 2013, 54, 1347-1353.	2.8	24
23	Comparison between Internalizing Anti-HER2 mAbs and Non-Internalizing Anti-CEA mAbs in Alpha-Radioimmunotherapy of Small Volume Peritoneal Carcinomatosis Using 212Pb. PLoS ONE, 2013, 8, e69613.	1.1	54
24	Clinical radioimmunotherapyâ€"the role of radiobiology. Nature Reviews Clinical Oncology, 2011, 8, 720-734.	12. 5	191
25	In Vivo Distribution of Avidin-Conjugated MX35 and 211 At-Labeled, Biotinylated Poly-l-Lysine for Pretargeted Intraperitoneal \hat{l}_{\pm} -Radioimmunotherapy. Cancer Biotherapy and Radiopharmaceuticals, 2011, 26, 727-736.	0.7	10
26	Alpha-Particle Microdosimetry. Current Radiopharmaceuticals, 2011, 4, 266-280.	0.3	19
27	Evidence of Extranuclear Cell Sensitivity to Alpha-Particle Radiation Using a Microdosimetric Model. I. Presentation and Validation of a Microdosimetric Model. Radiation Research, 2009, 171, 657-663.	0.7	25
28	Comparison of Electron Dose-Point Kernels in Water Generated by the Monte Carlo Codes, PENELOPE, GEANT4, MCNPX, and ETRAN. Cancer Biotherapy and Radiopharmaceuticals, 2009, 24, 461-467.	0.7	31
29	Evidence of Extranuclear Cell Sensitivity to Alpha-Particle Radiation Using a Microdosimetric Model. II. Application of the Microdosimetric Model to Experimental Results. Radiation Research, 2009, 171, 664-673.	0.7	25
30	Cell Membrane is a More Sensitive Target than Cytoplasm to Dense Ionization Produced by Auger Electrons. Radiation Research, 2008, 170, 192-200.	0.7	99
31	Implementation of a Microdosimetric Model for Radioimmunotherapeutic Alpha Emitters. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 387-392.	0.7	3
32	Implementing Dosimetry in GATE: Dose-Point Kernel Validation with GEANT4 4.8.1. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 125-129.	0.7	34