List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7892943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tropical grassy biomes: misunderstood, neglected, and under threat. Trends in Ecology and Evolution, 2014, 29, 205-213.	8.7	423
2	A Classification of Australian Ant Communities, Based on Functional Groups Which Parallel Plant Life-Forms in Relation to Stress and Disturbance. Journal of Biogeography, 1995, 22, 15.	3.0	402
3	Responses of ant communities to dry sulfur deposition from mining emissions in semiâ€arid tropical Australia, with implications for the use of functional groups. Austral Ecology, 2000, 25, 653-663.	1.5	380
4	Patch Mosaic Burning for Biodiversity Conservation: a Critique of the Pyrodiversity Paradigm. Conservation Biology, 2006, 20, 1610-1619.	4.7	350
5	Value of longâ€ŧerm ecological studies. Austral Ecology, 2012, 37, 745-757.	1.5	326
6	Fire frequency and biodiversity conservation in Australian tropical savannas: implications from the Kapalga fire experiment. Austral Ecology, 2005, 30, 155-167.	1.5	313
7	Ants show the way Down Under: invertebrates as bioindicators in land management. Frontiers in Ecology and the Environment, 2004, 2, 291-298.	4.0	308
8	Functional groups and patterns of organization in North American ant communities: a comparison with Australia. Journal of Biogeography, 1997, 24, 433-460.	3.0	282
9	Using ants as bioindicators in land management: simplifying assessment of ant community responses. Journal of Applied Ecology, 2002, 39, 8-17.	4.0	263
10	Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral Ecology, 2003, 28, 444-464.	1.5	248
11	Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 2009, 12, 324-333.	6.4	233
12	Regulation of "Momentary" Diversity by Dominant Species in Exceptionally Rich Ant Communities of the Australian Seasonal Tropics. American Naturalist, 1992, 140, 401-420.	2.1	215
13	Responses of Ground-Foraging Ant Communities to Three Experimental Fire Regimes in a Savanna Forest of Tropical Australia. Biotropica, 1991, 23, 575.	1.6	213
14	Prescribed burning: how can it work to conserve the things we value?. International Journal of Wildland Fire, 2011, 20, 721.	2.4	193
15	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq	1 1 0.7843 1.9	14 rgBT /Ονe 186
16	How important is seed predation to recruitment in stable populations of long-lived perennials?. Oecologia, 1989, 81, 310-315.	2.0	177
17	Using Ants as bioindicators: Multiscale Issues in Ant Community Ecology. Ecology and Society, 1997, 1, .	0.9	168
18	Meat ants as dominant members of Australian ant communities: an experimental test of their influence on the foraging success and forager abundance of other species. Oecologia, 1994, 98, 15-24.	2.0	161

#	Article	IF	CITATIONS
19	ANT BODY SIZE PREDICTS DISPERSAL DISTANCE OF ANT-ADAPTED SEEDS: IMPLICATIONS OF SMALL-ANT INVASIONS. Ecology, 2004, 85, 1244-1250.	3.2	160
20	Sampling communities of ground-foraging ants: Pitfall catches compared with quadrat counts in an Australian tropical savanna. Austral Ecology, 1991, 16, 273-279.	1.5	149
21	Measuring more of biodiversity: Genus richness as a surrogate for species richness in Australian ant faunas. Biological Conservation, 1995, 73, 39-43.	4.1	149
22	Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic forest. Biodiversity and Conservation, 2012, 21, 1687-1701.	2.6	136
23	Dispersal distance as a benefit of myrmecochory. Oecologia, 1988, 75, 507-511.	2.0	132
24	Responses of ant communities to disturbance: Five principles for understanding the disturbance dynamics of a globally dominant faunal group. Journal of Animal Ecology, 2019, 88, 350-362.	2.8	131
25	Ants as Indicators of Restoration Success: Relationship with Soil Microbial Biomass in the Australian Seasonal Tropics. Restoration Ecology, 1997, 5, 109-114.	2.9	126
26	Fire research for conservation management in tropical savannas: Introducing the Kapalga fire experiment. Austral Ecology, 1998, 23, 95-110.	1.5	125
27	Use of terrestrial invertebrates for biodiversity monitoring in Australian rangelands, with particular reference to ants. Austral Ecology, 2004, 29, 87-92.	1.5	122
28	Ants as bioindicators of habitat disturbance: validation of the functional group model for Australia's humid tropics. Biodiversity and Conservation, 1998, 7, 1627-1638.	2.6	120
29	Biodiversity consequences of land-use change and forest disturbance in the Amazon: A multi-scale assessment using ant communities. Biological Conservation, 2016, 197, 98-107.	4.1	119
30	Ants as Indicators of Restoration Success at a Uranium Mine in Tropical Australia. Restoration Ecology, 1993, 1, 156-167.	2.9	109
31	The underestimated biodiversity of tropical grassy biomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150319.	4.0	103
32	Species diversity and temporal distribution of ants in the semi-arid mallee region of northwestern Victoria. Austral Ecology, 1983, 8, 127-137.	1.5	100
33	Immediate effects of Ore on ants in the semi-arid mallee region of north-western Victoria. Austral Ecology, 1985, 10, 25-30.	1.5	99
34	Immediate and longer-term effects of fire on seed predation by ants in sclerophyllous vegetation in south-eastern Australia. Austral Ecology, 1988, 13, 285-293.	1.5	99
35	Impact of an introduced ant on native rain forest invertebrates:. Oecologia, 1999, 120, 595.	2.0	97
36	Savanna burning for biodiversity: Fire management for faunal conservation in Australian tropical savannas. Austral Ecology, 2012, 37, 658-667.	1.5	93

#	Article	IF	CITATIONS
37	The value of ants as early warning bioindicators: responses to pulsed cattle grazing at an Australian arid zone locality. Journal of Arid Environments, 2000, 45, 231-251.	2.4	91
38	Diversity, Seasonality and Community Organization of Ants at Adjacent Heath and Woodland Sites in Southeastern Australia. Australian Journal of Zoology, 1986, 34, 53.	1.0	87
39	Global diversity in light of climate change: the case of ants. Diversity and Distributions, 2011, 17, 652-662.	4.1	87
40	Anthropogenic disturbance reduces seed-dispersal services for myrmecochorous plants in the Brazilian Caatinga. Oecologia, 2014, 174, 173-181.	2.0	86
41	Arthropod responses to experimental fire regimes in an Australian tropical savannah: ordinal-level analysis. Austral Ecology, 2000, 25, 199-209.	1.5	85
42	Ants of Northern Australia. , 2000, , .		83
43	Savanna fires increase rates and distances of seed dispersal by ants. Oecologia, 2007, 151, 33-41.	2.0	82
44	Not enough niches: nonâ€equilibrial processes promoting species coexistence in diverse ant communities. Austral Ecology, 2008, 33, 211-220.	1.5	82
45	Indigenous Wetland Burning: Conserving Natural and Cultural Resources in Australia's World Heritage-listed Kakadu National Park. Human Ecology, 2010, 38, 721-729.	1.4	82
46	Myrmecochory in Australia's seasonal tropics: Effects of disturbance on distance dispersal. Austral Ecology, 1998, 23, 483-491.	1.5	80
47	Long-term fire exclusion and ant community structure in an Australian tropical savanna: congruence with vegetation succession. Journal of Biogeography, 2006, 33, 823-832.	3.0	80
48	Impact of an introduced ant on native rain forest invertebrates: Pheidole megacephala in monsoonal Australia. Oecologia, 1999, 120, 595-604.	2.0	71
49	Rates of seed removal by ants at heath and woodland sites in southeastern Australia. Austral Ecology, 1985, 10, 381-390.	1.5	69
50	Neotropical savanna ants show a reversed latitudinal gradient of species richness, with climatic drivers reflecting the forest origin of the fauna. Journal of Biogeography, 2018, 45, 248-258.	3.0	67
51	The big ecological questions inhibiting effective environmental management in Australia. Austral Ecology, 2009, 34, 1-9.	1.5	66
52	Effects of Seed Predation by Ants on Seedling Densities at a Woodland Site in SE Australia. Oikos, 1987, 48, 171.	2.7	65
53	Burning for biodiversity: highly resilient ant communities respond only to strongly contrasting fire regimes in <scp>A</scp> ustralia's seasonal tropics. Journal of Applied Ecology, 2014, 51, 1406-1413.	4.0	65
54	Constraint and Competition in Assemblages: A Crossâ€Continental and Modeling Approach for Ants. American Naturalist, 2005, 165, 481-494.	2.1	63

#	Article	IF	CITATIONS
55	A framework for deriving measures of chronic anthropogenic disturbance: Surrogate, direct, single and multi-metric indices in Brazilian Caatinga. Ecological Indicators, 2018, 94, 274-282.	6.3	63
56	Herbivory by Insects in Australian Tropical Savannas: A Review. Journal of Biogeography, 1990, 17, 433.	3.0	62
57	Grasshopper biodiversity and bioindicators in Australian tropical savannas: Responses to disturbance in Kakadu National Park. Austral Ecology, 2001, 26, 213-222.	1.5	62
58	Insect Seed Predators May Cause Far Greater Losses Than They Appear to. Oikos, 1988, 52, 337.	2.7	60
59	Ants as indicators of minesite restoration: community recovery at one of eight rehabilitation sites in central Queensland. Ecological Management and Restoration, 2003, 4, S12-S19.	1.5	60
60	Myrmecochores can target high-quality disperser ants: variation in elaiosome traits and ant preferences for myrmecochorous Euphorbiaceae in Brazilian Caatinga. Oecologia, 2014, 174, 493-500.	2.0	59
61	Climate mediates the effects of disturbance on ant assemblage structure. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150418.	2.6	58
62	Fire experiments in northern Australia: contributions to ecological understanding and biodiversity conservation in tropical savannas. International Journal of Wildland Fire, 2003, 12, 391.	2.4	57
63	Breaking out of biogeographical modules: range expansion and taxon cycles in the hyperdiverse ant genus <i>Pheidole</i> . Journal of Biogeography, 2015, 42, 2289-2301.	3.0	57
64	Venom alkaloids in Monomorium ?rothsteini? Forel repel other ants: is this the secret to success by Monomorium in Australian ant communities?. Oecologia, 1991, 88, 157-160.	2.0	56
65	Response of ant and terrestrial spider assemblages to pastoral and military land use, and to landscape position, in a tropical savanna woodland in northern Australia. Austral Ecology, 2002, 27, 324-333.	1.5	55
66	Dominance and species co-occurrence in highly diverse ant communities: a test of the interstitial hypothesis and discovery of a three-tiered competition cascade. Oecologia, 2011, 166, 783-794.	2.0	53
67	Patterns of ant community organization in mesic southeastern Australia. Austral Ecology, 1986, 11, 87-97.	1.5	52
68	Soil seed banks confer resilience to savanna grass-layer plants during seasonal disturbance. Acta Oecologica, 2010, 36, 202-210.	1.1	52
69	Habitat disturbance selects against both small and large species across varying climates. Ecography, 2018, 41, 1184-1193.	4.5	51
70	Savanna ant species richness is maintained along a bioclimatic gradient of increasing latitude and decreasing rainfall in northern Australia. Journal of Biogeography, 2015, 42, 2313-2322.	3.0	50
71	Fire and biodiversity: responses of grass-layer beetles to experimental fire regimes in an Australian tropical savanna. Journal of Applied Ecology, 2001, 38, 49-62.	4.0	48
72	Fire resilience of ant assemblages in longâ€unburnt savanna of northern Australia. Austral Ecology, 2008, 33, 830-838.	1.5	48

#	Article	IF	CITATIONS
73	Topâ€down control of species distributions: feral cats driving the regional extinction of a threatened rodent in northern Australia. Diversity and Distributions, 2017, 23, 272-283.	4.1	47
74	Leaf-cutting ant populations profit from human disturbances in tropical dry forest in Brazil. Journal of Tropical Ecology, 2017, 33, 337-344.	1.1	46
75	Biodiversity surrogacy: indicator taxa as predictors of total species richness in Brazilian Atlantic forest and Caatinga. Biodiversity and Conservation, 2010, 19, 3347-3360.	2.6	42
76	Does longâ€ŧerm fire exclusion in an Australian tropical savanna result in a biome shift? A test using the reintroduction of fire. Austral Ecology, 2012, 37, 693-711.	1.5	42
77	Seed removal by ants in the mallee of northwestern Victoria. , 1982, , 31-43.		42
78	Ant Diversity and Distribution along Elevation Gradients in the Australian Wet Tropics: The Importance of Seasonal Moisture Stability. PLoS ONE, 2016, 11, e0153420.	2.5	42
79	Biodiversity responses to landâ€use and restoration in a global biodiversity hotspot: Ant communities in Brazilian Cerrado. Austral Ecology, 2019, 44, 313-326.	1.5	40
80	The Rainforest Ant Fauna of Australia's Northern Territory. Australian Journal of Zoology, 1996, 44, 81.	1.0	39
81	Variation in fire interval sequences has minimal effects on species richness and composition in fire-prone landscapes of south-west Western Australia. Forest Ecology and Management, 2011, 261, 965-978.	3.2	39
82	Declining populations in one of the last refuges for threatened mammal species in northern Australia. Austral Ecology, 2018, 43, 602-612.	1.5	39
83	Dominance–diversity relationships in ant communities differ with invasion. Global Change Biology, 2018, 24, 4614-4625.	9.5	39
84	Ant community responses to experimental fire and logging in a eucalypt forest of south-eastern Australia. Forest Ecology and Management, 2009, 258, 188-197.	3.2	38
85	Biome Awareness Disparity is BAD for tropical ecosystem conservation and restoration. Journal of Applied Ecology, 2022, 59, 1967-1975.	4.0	38
86	A global database of ant species abundances. Ecology, 2017, 98, 883-884.	3.2	37
87	Ants as ecological indicators of rainforest restoration: Community convergence and the development of an Ant Forest Indicator Index in the Australian wet tropics. Ecology and Evolution, 2017, 7, 8442-8455.	1.9	37
88	Fire-induced forest transition to derived savannas: Cascading effects on ant communities. Biological Conservation, 2017, 214, 295-302.	4.1	37
89	Faunal responses to fire in Australian tropical savannas: Insights from field experiments and their lessons for conservation management. Diversity and Distributions, 2021, 27, 828-843.	4.1	36
90	Ant megadiversity and its origins in arid Australia. Austral Entomology, 2016, 55, 132-137.	1.4	35

#	Article	IF	CITATIONS
91	Understanding what bioindicators are actually indicating: Linking disturbance responses to ecological traits of dung beetles and ants. Ecological Indicators, 2020, 108, 105764.	6.3	35
92	Ant Community Development on Rehabilitated Ash Dams in the South African Highveld. Restoration Ecology, 2004, 12, 552-558.	2.9	33
93	Multi-scale ant diversity in savanna woodlands: an intercontinental comparison. Austral Ecology, 2011, 36, 983-992.	1.5	33
94	Disturbance Winners or Losers? Plants Bearing Extrafloral Nectaries in Brazilian Caatinga. Biotropica, 2015, 47, 468-474.	1.6	33
95	The Benefits of Myrmecochory: A Matter of Stature. Biotropica, 2015, 47, 281-285.	1.6	33
96	RAINFALL-CONTINGENT DETECTION OF FIRE IMPACTS: RESPONSES OF BEETLES TO EXPERIMENTAL FIRE REGIMES. , 2001, 11, 86-96.		32
97	Ant community structure along an extended rain forest–savanna gradient in tropical Australia. Journal of Tropical Ecology, 2008, 24, 445-455.	1.1	32
98	Correlates of grass-species composition in a savanna woodland in northern Australia. Australian Journal of Botany, 2009, 57, 10.	0.6	32
99	Contrasting fireâ€related resilience of ecologically dominant ants in tropical savannas of northern Australia. Diversity and Distributions, 2007, 13, 438-446.	4.1	31
100	Limited niche differentiation within remarkable coâ€occurrences of congeneric species: <i><scp>M</scp>onomorium</i> ants in the <scp>A</scp> ustralian seasonal tropics. Austral Ecology, 2013, 38, 557-567.	1.5	31
101	Effects of increasing aridity and chronic anthropogenic disturbance on seed dispersal by ants in Brazilian Caatinga. Journal of Animal Ecology, 2019, 88, 870-880.	2.8	31
102	Better biodiversity accounting is needed to prevent bioperversity and maximize coâ€benefits from savanna burning. Conservation Letters, 2020, 13, e12685.	5.7	31
103	Soil of the nest-mound of the seed-dispersing ant, Aphaenogaster longiceps, enhances seedling growth. Austral Ecology, 1988, 13, 469-471.	1.5	30
104	Ant Communities in the Gulf Region of Australia Semiarid Tropics - Species Composition, Patterns of Organization, and Biogeography. Australian Journal of Zoology, 1993, 41, 399.	1.0	30
105	Indigenous plants promote insect biodiversity in urban greenspaces. Ecological Applications, 2021, 31, e02309.	3.8	30
106	Australian ant research: fabulous fauna, functional groups, pharmaceuticals, and the Fatherhood. Australian Journal of Entomology, 2004, 43, 235-247.	1.1	29
107	Bioclimatic transect networks: Powerful observatories of ecological change. Ecology and Evolution, 2017, 7, 4607-4619.	1.9	29
108	The Ant (Hymenoptera: Formicidae) Fauna of Holmes Jungle, a Rainforest Patch in the Seasonal Tropics of Australia's Northern Territory. Australian Journal of Entomology, 1994, 33, 153-158.	1.1	27

#	Article	IF	CITATIONS
109	Community Organisation, Biogeography and Seasonality of Ants in an Open Forest of South-eastern Queensland. Australian Journal of Zoology, 1997, 45, 523.	1.0	27
110	Invasive ants as back-seat drivers of native ant diversity decline in New Caledonia. Biological Invasions, 2013, 15, 2311-2331.	2.4	27
111	Novel 2-ethyl-5-alkylpyrrolidines in the venom of an australian ant of the genusMonomorium. Journal of Chemical Ecology, 1988, 14, 35-45.	1.8	26
112	Cooperation Between Dealate Queens During Colony Foundation in the Green Tree Ant, Oecophylla Smaragdina. Psyche: Journal of Entomology, 1989, 96, 39-44.	0.9	26
113	Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds. Oecologia, 2016, 182, 335-346.	2.0	26
114	Exploring a new biodiversity frontier: subterranean ants in northern Australia. Biodiversity and Conservation, 2010, 19, 2741-2750.	2.6	25
115	Chronic anthropogenic disturbance as a secondary driver of ant community structure: interactions with soil type in Brazilian Caatinga. Environmental Conservation, 2017, 44, 115-123.	1.3	25
116	Seed selection by an exceptionally rich community of harvester ants in the Australian seasonal tropics. Journal of Animal Ecology, 2000, 69, 975-984.	2.8	25
117	Effects of fire on grassâ€layer savanna macroinvertebrates as key food resources for insectivorous vertebrates in northern Australia. Austral Ecology, 2012, 37, 733-742.	1.5	24
118	Contrasting rainforest and savanna ant faunas in monsoonal northern Australia: a rainforest patch in a tropical savanna landscape. Australian Journal of Zoology, 2007, 55, 363.	1.0	24
119	Canopy and litter ant assemblages share similar climate–species density relationships. Biology Letters, 2010, 6, 769-772.	2.3	23
120	An experimental test of whether pyrodiversity promotes mammal diversity in a northern Australian savanna. Journal of Applied Ecology, 2018, 55, 2124-2134.	4.0	23
121	Insect Inhabitants of Fruits of Leptospermum, Eucalyptus and Casuarina in Southeastern Australia. Australian Journal of Zoology, 1987, 35, 327.	1.0	22
122	Ant Fauna of a Mangrove Community in the Australian Seasonal Tropics, With Particular Reference to Zonation. Australian Journal of Zoology, 1996, 44, 521.	1.0	22
123	Savanna burning, greenhouse gas emissions and indigenous livelihoods: Introducing the Tiwi Carbon Study. Austral Ecology, 2012, 37, 712-723.	1.5	22
124	Molecular phylogeny of <scp>I</scp> ndoâ€ <scp>P</scp> acific carpenter ants (<scp>H</scp> ymenoptera:) Tj ET from diverse source areas. Cladistics, 2015, 31, 424-437.	Qq0 0 0 r 3.3	gBT /Overloc 22
125	Multi-century dynamics of ant communities following fire in Mediterranean-climate woodlands: Are changes congruent with vegetation succession?. Forest Ecology and Management, 2015, 342, 30-38.	3.2	21
126	Is thermal limitation the primary driver of elevational distributions? Not for montane rainforest ants in the Australian Wet Tropics. Oecologia, 2018, 188, 333-342.	2.0	20

#	Article	IF	CITATIONS
127	Is livestock grazing compatible with biodiversity conservation? Impacts on savanna ant communities in the Australian seasonal tropics. Biodiversity and Conservation, 2017, 26, 883-897.	2.6	18
128	Human disturbance promotes herbivory by leaf utting ants in the Caatinga dry forest. Biotropica, 2018, 50, 779-788.	1.6	18
129	Preâ€dispersal seed losses to insects in species of <i>Leptospermum</i> (Myrtaceae). Austral Ecology, 1989, 14, 13-18.	1.2	17
130	The ant fauna of the remote Mitchell Falls area of tropical north-western Australia: biogeography, environmental relationships and conservation significance. Journal of Insect Conservation, 2010, 14, 647-661.	1.4	17
131	Invasion impacts on biodiversity: responses of ant communities to infestation by cat's claw creeper vine, Macfadyena unguis-cati (Bignoniaceae) in subtropical Australia. Biological Invasions, 2011, 13, 2289-2302.	2.4	17
132	Foundations for the future: A longâ€ŧerm plan for <scp>A</scp> ustralian ecosystem science. Austral Ecology, 2014, 39, 739-748.	1.5	17
133	Consistent sorting but contrasting transition zones in plant communities along bioclimatic gradients. Acta Oecologica, 2019, 95, 74-85.	1.1	17
134	Plant and ant assemblages predicted to decouple under climate change. Diversity and Distributions, 2019, 25, 551-567.	4.1	17
135	Cross-taxon congruence in insect responses to fragmentation of Brazilian Atlantic forest. Ecological Indicators, 2019, 98, 523-530.	6.3	17
136	Canopy Ant Communities in the Semiarid Mallee Region of North-Western Victoria. Australian Journal of Zoology, 1992, 40, 205.	1.0	16
137	Common names for Australian ants (Hymenoptera: Formicidae). Australian Journal of Entomology, 2002, 41, 285-293.	1.1	16
138	Ants of the Caatinga: Diversity, Biogeography, and Functional Responses to Anthropogenic Disturbance and Climate Change. , 2017, , 65-95.		16
139	Rapid response of habitat structure and above-ground carbon storage to altered fire regimes in tropical savanna. Biogeosciences, 2019, 16, 1493-1503.	3.3	16
140	Are stacked species distribution models accurate at predicting multiple levels of diversity along a rainfall gradient?. Austral Ecology, 2019, 44, 105-113.	1.5	16
141	Arboreality drives heat tolerance while elevation drives cold tolerance in tropical rainforest ants. Ecology, 2022, 103, e03549.	3.2	16
142	THE RAINFOREST ANT FAUNA OF THE NORTHERN KIMBERLEY REGION OF WESTERN AUSTRALIA (HYMENOPTERA: FORMICIDAE). Australian Journal of Entomology, 1992, 31, 187-192.	1.1	15
143	Conservation value of low fire frequency in tropical savannas: Ants in monsoonal northern Australia. Austral Ecology, 2011, 36, 497-503.	1.5	15
144	When macroecological transitions are a fiction of sampling: comparing herbarium records to plotâ€based species inventory data. Ecography, 2018, 41, 1864-1875.	4.5	15

#	Article	IF	CITATIONS
145	Fire ecology and management. , 1996, , 179-195.		15

146 The Ant Fauna of the Bo wen Basin, in the Semi-arid Tropics of Central Queensland (Hymenoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

147	Do tropical savanna skink assemblages show a short-term response to low-intensity fire?. Wildlife Research, 2006, 33, 331.	1.4	14
148	Extrafloral nectar as a driver of arboreal ant communities at the siteâ€scale in Brazilian savanna. Austral Ecology, 2018, 43, 672-680.	1.5	14
149	Overview of the Distribution, Habitat Association and Impact of Exotic Ants on Native Ant Communities in New Caledonia. PLoS ONE, 2013, 8, e67245.	2.5	14
150	Diversity and biogeography of a speciesâ€rich ant fauna of the Australian seasonal tropics. Insect Science, 2018, 25, 519-526.	3.0	13
151	Niche differentiation in rainforest ant communities across three continents. Ecology and Evolution, 2019, 9, 8601-8615.	1.9	13
152	Vertebrates are poor umbrellas for invertebrates: crossâ€ŧaxon congruence in an Australian tropical savanna. Ecosphere, 2019, 10, e02755.	2.2	13
153	The distribution of ants on the Wessel and English Company Islands, in the seasonal tropics of Australia's Northern Territory. Australian Journal of Zoology, 1998, 46, 557.	1.0	12
154	Venom Alkaloid Chemistry of Australian Species of the <i>Monomorium rothsteini</i> Complex, with Particular Reference to Taxonomic Implications. Chemistry and Biodiversity, 2009, 6, 1034-1041.	2.1	12
155	Environmental factors influencing the establishment, height and fecundity of the annual grass <i>Sorghum intrans</i> in an Australian tropical savanna. Journal of Tropical Ecology, 2010, 26, 313-322.	1.1	12
156	Biodiversity impacts of an invasive grass: ant community responses to Cenchrus ciliaris in arid Australia. Biological Invasions, 2017, 19, 57-72.	2.4	12
157	Ants in Australia's Monsoonal Tropics: CO1 Barcoding Reveals Extensive Unrecognised Diversity. Diversity, 2018, 10, 36.	1.7	12
158	Habitatâ€contingent responses to disturbance: impacts of cattle grazing on ant communities vary with habitat complexity. Ecological Applications, 2018, 28, 1808-1817.	3.8	12
159	Andromonoecy in Four Australian Species of Leptospermum. Australian Journal of Botany, 1990, 38, 511.	0.6	11
160	The Ant Fauna of Danggali Conservation Park in Semi-arid South Australia: a Comparison with Wyperfeld (Vic.) and Cape Arid (W.A.) National Parks. Australian Journal of Entomology, 1996, 35, 289-295.	1.1	11
161	Plant protection services mediated by extrafloral nectaries decline with aridity but are not influenced by chronic anthropogenic disturbance in Brazilian Caatinga. Journal of Ecology, 2021, 109, 260-272.	4.0	11
162	Historical biogeography shapes functional ecology: Inter ontinental contrasts in responses of savanna ant communities to stress and disturbance. Journal of Biogeography, 2022, 49, 590-599.	3.0	11

#	Article	IF	CITATIONS
163	Synthesis: Fire Ecology and Adaptive Conservation Management. , 2003, , 153-164.		10
164	Biogeography of the ant fauna of the Tiwi Islands, in northern Australia's monsoonal tropics. Australian Journal of Zoology, 2004, 52, 97.	1.0	10
165	The ant fauna of Timor and neighbouring islands: potential bridges between the disjunct faunas of South East Asia and Australia. Australian Journal of Zoology, 2010, 58, 133.	1.0	10
166	Biogeography of Timor and Surrounding Wallacean Islands: Endemism in Ants of the Genus Polyrhachis Fr. Smith. Diversity, 2013, 5, 139-148.	1.7	10
167	Conservation status of ants in an iconic region of monsoonal Australia: levels of endemism and responses to fire in the eastern Kimberley. Journal of Insect Conservation, 2014, 18, 137-146.	1.4	10
168	Yellow-meadow ant (Lasius flavus) mound development determines soil properties and growth responses of different plant functional types. European Journal of Soil Biology, 2017, 81, 83-93.	3.2	10
169	Invertebrate by-catch from vertebrate pitfall traps can be useful for documenting patterns of invertebrate diversity. Journal of Insect Conservation, 2019, 23, 547-554.	1.4	10
170	Switching roles from antagonist to mutualist: a harvester ant as a key seed disperser of a myrmecochorous plant. Ecological Entomology, 2020, 45, 1063-1070.	2.2	10
171	Plant-animal interactions. , 1996, , 137-154.		10
172	The grasshopper (Orthoptera : Acridoidea, Eumastacoidea and Tettigonioidea) fauna of Kakadu National Park in the Australian seasonal tropics: biogeography, habitat associations and functional groups. Australian Journal of Zoology, 2000, 48, 431.	1.0	9
173	Fire tolerance of perennial grass tussocks in a savanna woodland. Austral Ecology, 2010, 35, 858-861.	1.5	9
174	Ant biodiversity and its environmental predictors in the North Kimberley region of Australia's seasonal tropics. Biodiversity and Conservation, 2016, 25, 1727-1759.	2.6	9
175	Biodiversity responses to vegetation structure in a fragmented landscape: ant communities in a peri-urban coastal dune system. Journal of Insect Conservation, 2016, 20, 485-495.	1.4	9
176	Incorporating habitat suitability into community projections: Ant responses to climate change in the Australian Wet Tropics. Diversity and Distributions, 2019, 25, 1273-1288.	4.1	9
177	Different trophic groups of arboreal ants show differential responses to resource supplementation in a neotropical savanna. Oecologia, 2019, 190, 433-443.	2.0	9
178	Megadiversity in the Ant Genus Melophorus: The M. rufoniger Heterick, Castalanelli and Shattuck Species Group in the Top End of Australia's Northern Territory. Diversity, 2020, 12, 386.	1.7	9
179	Taxonomic confusion of two tramp ant species: Iridomyrmex anceps and Ochetellus glaber are really species complexes. Environmental Epigenetics, 2011, 57, 662-667.	1.8	8
180	The Fire Refuge Value of Patches of a Fire‣ensitive Tree in Fireâ€prone Savannas: <i>Callitris intratropica</i> in Northern Australia. Biotropica, 2013, 45, 594-601.	1.6	8

#	Article	IF	CITATIONS
181	Navigating the mt <scp>DNA</scp> road map out of the morphological maze: interpreting morphological variation in the diverse <i>Monomorium rothsteini</i> (<scp>F</scp> orel) complex (<scp>H</scp> ymenoptera: <scp>F</scp> ormicidae). Systematic Entomology, 2014, 39, 264-278.	3.9	8
182	Habitat fragmentation, EFNâ€bearing trees and ant communities: Ecological cascades in Atlantic Forest of northeastern Brazil. Austral Ecology, 2017, 42, 31-39.	1.5	8
183	Effects of Human Disturbance and Climate Change on Myrmecochory in Brazilian Caatinga. , 2017, , 112-132.		8
184	Seed supply limits seedling recruitment of Eucalyptus miniata: interactions between seed predation by ants and fire in the Australian seasonal tropics. Oecologia, 2018, 186, 965-972.	2.0	8
185	Extrafloral nectar as a driver of ant community spatial structure along disturbance and rainfall gradients in Brazilian dry forest. Journal of Tropical Ecology, 2019, 35, 280-287.	1.1	8
186	A multi-gene phylogeny of Australian Monomorium Mayr (Hymenoptera : Formicidae) results in reinterpretation of the genus and resurrection of Chelaner Emery. Invertebrate Systematics, 2019, , .	1.3	8
187	Selecting complementary target taxa for representing terrestrial invertebrate diversity in the Australian seasonal tropics. Ecological Indicators, 2020, 109, 105836.	6.3	8
188	Diversity and Distribution of the Dominant Ant Genus Anonychomyrma (Hymenoptera: Formicidae) in the Australian Wet Tropics. Diversity, 2020, 12, 474.	1.7	8
189	Responses of ant communities to dry sulfur deposition from mining emissions in semi-arid tropical Australia, with implications for the use of functional groups. Austral Ecology, 2000, 25, 653-663.	1.5	8
190	Rainforest ants of the Tiwi Islands: a remarkable centre of endemism in Australia's monsoonal tropics. Insectes Sociaux, 2012, 59, 433-441.	1.2	7
191	Dung beetles of an Australian tropical savanna: Species composition, food preferences and responses to experimental fire regimes. Austral Ecology, 2020, 45, 958-967.	1.5	7
192	Vertical niche and elevation range size in tropical ants: Implications for climate resilience. Diversity and Distributions, 2021, 27, 485-496.	4.1	7
193	Unrecognized Ant Megadiversity in Monsoonal Australia: Diversity and Its Distribution in the Hyperdiverse Monomorium nigrius Forel Group. Diversity, 2022, 14, 46.	1.7	7
194	Flammability in tropical savannas: Variation among growth forms and seasons in Cerrado. Biotropica, 2022, 54, 979-987.	1.6	7
195	Seed selection by an exceptionally rich community of harvester ants in the Australian seasonal tropics. Journal of Animal Ecology, 2000, 69, 975-984.	2.8	6
196	Savanna burning: The ecology and economy of fire in tropical savannas. Austral Ecology, 2012, 37, 633-633.	1.5	6
197	The importance of sampling intensity when assessing ecosystem restoration: ants as bioindicators in northern Australia. Restoration Ecology, 2020, 28, 737-741.	2.9	6
198	Fire ecology for the 21st century: Conserving biodiversity in the age of megafire. Diversity and Distributions, 2022, 28, 350-356.	4.1	6

#	Article	IF	CITATIONS
199	New Caledonia has a depauperate subterranean ant fauna, despite spectacular radiations above ground. Biodiversity and Conservation, 2012, 21, 2489-2497.	2.6	5
200	Systematics of the Monomorium rothsteini Forel species complex (Hymenoptera: Formicidae), a problematic ant group in Australia. Zootaxa, 2014, 3893, 489-529.	0.5	5
201	The Megadiverse Australian Ant Genus Melophorus: Using CO1 Barcoding to Assess Species Richness. Diversity, 2016, 8, 30.	1.7	5
202	Ants Show the Way Down Under: Invertebrates as Bioindicators in Land Management. Frontiers in Ecology and the Environment, 2004, 2, 291.	4.0	5
203	Individual and interactive effects of chronic anthropogenic disturbance and rainfall on taxonomic, functional and phylogenetic composition and diversity of extrafloral nectary-bearing plants in Brazilian Caatinga. Oecologia, 2022, 198, 267-277.	2.0	5
204	Terrestrial Insects. , 2003, , 107-125.		4
205	The influence of spatial scale on the congruence of classifications circumscribing morphological units of biodiversity. Diversity and Distributions, 2008, 14, 917-924.	4.1	4
206	Palaeontology., adaptation and community ecology: A response to Walter and Pater son (1994). Austral Ecology, 1995, 20, 458-462.	1.2	2
207	Oldâ€field restoration improves habitat for ants in a semiâ€arid landscape. Restoration Ecology, 2022, 30, e13605.	2.9	2
208	Diversity, Biogeography and Community Ecology of Ants: Introduction to the Special Issue. Diversity, 2021, 13, 625.	1.7	2
209	A new species of Epopostruma (Hymenoptera: Formicidae) from monsoonal Australia. Zootaxa, 2021, 5048, 141-144.	0.5	0
210	Faunal standards for the restoration of terrestrial ecosystems: a framework and its application to a bighâ€profile case study. Restoration Ecology, 0	2.9	0

210 highâ€profile case study. Restoration Ecology, 0, , .