Jun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7892787/publications.pdf

Version: 2024-02-01

236612 243296 2,132 61 25 44 citations h-index g-index papers 61 61 61 1801 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Polymer Acceptors Containing Bâ†N Units for Organic Photovoltaics. Accounts of Chemical Research, 2020, 53, 1557-1567.	7.6	176
2	Organoboron Polymer for 10% Efficiency All-Polymer Solar Cells. Chemistry of Materials, 2020, 32, 1308-1314.	3.2	155
3	All-polymer indoor photovoltaics with high open-circuit voltage. Journal of Materials Chemistry A, 2019, 7, 26533-26539.	5.2	107
4	Quadruply Bâ†N-Fused Dibenzo-azaacene with High Electron Affinity and High Electron Mobility. Journal of the American Chemical Society, 2019, 141, 17015-17021.	6.6	93
5	Organoboron molecules and polymers for organic solar cell applications. Chemical Society Reviews, 2022, 51, 153-187.	18.7	92
6	n‶ype Azaacenes Containing Bâ†N Units. Angewandte Chemie - International Edition, 2018, 57, 2000-2004.	7.2	82
7	Electronâ€Deficient Conjugated Materials via p–π* Conjugation with Boron: Extending Monomers to Oligomers, Macrocycles, and Polymers. Chemistry - A European Journal, 2021, 27, 2973-2986.	1.7	78
8	A Distannylated Monomer of a Strong Electronâ€Accepting Organoboron Building Block: Enabling Acceptor–Acceptorâ€Type Conjugated Polymers for nâ€Type Thermoelectric Applications. Angewandte Chemie - International Edition, 2021, 60, 16184-16190.	7.2	78
9	Oligo(ethylene glycol) as side chains of conjugated polymers for optoelectronic applications. Polymer Chemistry, 2020, 11, 1261-1270.	1.9	76
10	Enhanced efficacy of photothermal therapy by combining a semiconducting polymer with an inhibitor of a heat shock protein. Materials Chemistry Frontiers, 2019, 3, 127-136.	3.2	68
11	An A–D–Aâ€2–D–A type small molecule acceptor with a broad absorption spectrum for organic solar cells. Chemical Communications, 2018, 54, 303-306.	2.2	61
12	Improving Active Layer Morphology of All-Polymer Solar Cells by Dissolving the Two Polymers Individually. Macromolecules, 2019, 52, 2402-2410.	2.2	49
13	An organoboron compound with a wide absorption spectrum for solar cell applications. Chemical Communications, 2017, 53, 12213-12216.	2.2	48
14	Fine-Tuning LUMO Energy Levels of Conjugated Polymers Containing a Bâ†N Unit. Macromolecules, 2017, 50, 8521-8528.	2.2	46
15	Electron-transporting polymers based on a double Bâ†N bridged bipyridine (BNBP) unit. Chemical Communications, 2017, 53, 1649-1652.	2.2	45
16	Improving Active Layer Morphology of All-Polymer Solar Cells by Solution Temperature. Macromolecules, 2020, 53, 3325-3331.	2.2	43
17	Amorphous Polymer Acceptor Containing B ↕N Units Matches Various Polymer Donors for All-Polymer Solar Cells. Macromolecules, 2019, 52, 7081-7088.	2.2	42
18	A p-Ï€* conjugated triarylborane as an alcohol-processable n-type semiconductor for organic optoelectronic devices. Journal of Materials Chemistry C, 2019, 7, 7427-7432.	2.7	42

#	Article	IF	CITATIONS
19	B ↕N Unit Enables n-Doping of Conjugated Polymers for Thermoelectric Application. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10428-10433.	4.0	42
20	Tuning the work functions of graphene quantum dot-modified electrodes for polymer solar cell applications. Nanoscale, 2017, 9, 3524-3529.	2.8	40
21	Polymer Electron Acceptors with Conjugated Side Chains for Improved Photovoltaic Performance. Macromolecules, 2017, 50, 3171-3178.	2.2	38
22	Organic solar cells based on small molecule donors and polymer acceptors operating at 150 ${\hat {\sf A}}^{\sf o}{\sf C}$. Journal of Materials Chemistry A, 2020, 8, 10983-10988.	5.2	37
23	A polymer acceptor containing the Bâ†N unitfor all-polymer solar cells with 14% efficiency. Journal of Materials Chemistry A, 2021, 9, 21071-21077.	5.2	36
24	A Conjugated Polymer Containing a B ↕N Unit for Unipolar n-Type Organic Field-Effect Transistors. ACS Applied Polymer Materials, 2020, 2, 19-25.	2.0	35
25	Small Molecular Donor/Polymer Acceptor Type Organic Solar Cells: Effect of Molecular Weight on Active Layer Morphology. Macromolecules, 2019, 52, 8682-8689.	2.2	33
26	A polymer electron donor based on isoindigo units bearing branched oligo(ethylene glycol) side chains for polymer solar cells. Polymer Chemistry, 2017, 8, 5496-5503.	1.9	26
27	Effects of the Substituents of Boron Atoms on Conjugated Polymers Containing Bâ†N Units. Chemistry - A European Journal, 2018, 24, 13043-13048.	1.7	25
28	Organic solar cells based on a polymer acceptor and a small molecule donor with a high open-circuit voltage. Journal of Materials Chemistry C, 2017, 5, 6812-6819.	2.7	24
29	A New Electronâ€Rich Unit for Polymer Electron Acceptors: 4,4â€Difluoroâ€4 <i>H</i> à€cyclopenta[2,1â€b:3,4â€b′]dithiophene. Chemistry - A European Journal, 2017, 23 9486-9490.	3,1.7	23
30	Donor–acceptor type conjugated copolymers based on alternating BNBP and oligothiophene units: from electron acceptor to electron donor and from amorphous to semicrystalline. Journal of Materials Chemistry A, 2020, 8, 20998-21006.	5.2	22
31	Isomers of Bâ†Nâ€Fused Dibenzoâ€azaacenes: How Bâ†N Affects Optoâ€electronic Properties and Device Behaviors?. Chemistry - A European Journal, 2021, 27, 4364-4372.	1.7	22
32	Molecular Acceptors Based on a Triarylborane Core Unit for Organic Solar Cells. Chemistry - A European Journal, 2020, 26, 873-880.	1.7	21
33	A difluorobenzothiadiazole-based conjugated polymer with alkylthiophene as the side chains for efficient, additive-free and thick-film polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 20473-20481.	5.2	20
34	A Resonating B, N Covalent Bond and Coordination Bond in Aromatic Compounds and Conjugated Polymers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
35	nâ€Type Azaacenes Containing Bâ†N Units. Angewandte Chemie, 2018, 130, 2018-2022.	1.6	18
36	Morphology of small molecular donor/polymer acceptor blends in organic solar cells: effect of the π–π stacking capability of the small molecular donors. Journal of Materials Chemistry C, 2019, 7, 10521-10529.	2.7	17

#	Article	lF	CITATIONS
37	A disk-type polyarene containing four Bâ†N units. Chemical Communications, 2019, 55, 3638-3641.	2.2	17
38	N–B ↕N Bridged Bithiophene: A Building Block with Reduced Band Gap to Design n-Type Conjugated Polymers. Macromolecules, 2021, 54, 6718-6725.	2.2	17
39	A New Polymer Electron Acceptor Based on Thiopheneâ€∢i>S,S⟨li>â€dioxide Unit for Organic Photovoltaics. Macromolecular Rapid Communications, 2018, 39, 1700505.	2.0	15
40	An A–D–A′–D–A type small molecule acceptor with wide absorption spectrum and near-infrared absorption. Materials Chemistry Frontiers, 2018, 2, 2333-2339.	3.2	15
41	Effect of fluorine substitution in organoboron electron acceptors for photovoltaic application. Organic Chemistry Frontiers, 2019, 6, 1996-2003.	2.3	15
42	A Distannylated Monomer of a Strong Electronâ€Accepting Organoboron Building Block: Enabling Acceptor–Acceptorâ€Type Conjugated Polymers for nâ€Type Thermoelectric Applications. Angewandte Chemie, 2021, 133, 16320-16326.	1.6	15
43	Bâ†N-Incorporated Dibenzo-azaacenes as n-Type Thermoelectric Materials. ACS Applied Materials & Samp; Interfaces, 2021, 13, 33321-33327.	4.0	15
44	Effect of polymer donor aggregation on the active layer morphology of amorphous polymer acceptor-based all-polymer solar cells. Journal of Materials Chemistry C, 2020, 8, 5613-5619.	2.7	13
45	Dual FÃ \P rster resonance energy transfer and morphology control to boost the power conversion efficiency of all-polymer OPVs. RSC Advances, 2017, 7, 13289-13298.	1.7	12
46	Effect of Alkyl Side Chains of Polymer Donors on Photovoltaic Performance of All-Polymer Solar Cells. ACS Applied Polymer Materials, 2021, 3, 42-48.	2.0	12
47	Bâ†Nâ€Incorporated Dibenzoâ€azaacene with Selective Nearâ€Infrared Absorption and Visible Transparency. Chemistry - A European Journal, 2021, 27, 2065-2071.	1.7	12
48	Amino <i>N</i> -oxide functionalized graphene quantum dots as a cathode interlayer for inverted polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 5684-5689.	2.7	11
49	Designed Polymer Donors to Match an Amorphous Polymer Acceptor in All-Polymer Solar Cells. ACS Applied Electronic Materials, 2020, 2, 2274-2281.	2.0	11
50	All-polymer indoor photovoltaics based on polymer acceptors with various bandgap. Organic Electronics, 2021, 92, 106134.	1.4	11
51	Cesium-functionalized pectin as a cathode interlayer for polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 1592-1596.	2.7	10
52	Self-Standing and Flexible Thermoelectric Nanofiber Mat of an n-Type Conjugated Polymer. ACS Applied Electronic Materials, 2021, 3, 3641-3647.	2.0	10
53	BODIPY bearing alkylthienyl side chains: a new building block to design conjugated polymers with near infrared absorption for organic photovoltaics. Polymer Chemistry, 2020, 11, 5750-5756.	1.9	9
54	A polymer acceptor containing a B ↕N unit with strong fluorescence for organic photovoltaics. Journal of Materials Chemistry C, 2022, 10, 10860-10865.	2.7	8

#	Article	IF	Citations
55	Incorporating Cyano Groups to a Conjugated Polymer Based on Double Bâ†N Bridged Bipyridine Unit for Unipolar n-Type Organic Field-Effect Transistors. Organic Materials, 0, 3, .	1.0	5
56	Boosting charge and thermal transport $\hat{a}\in$ "role of insulators in stable and efficient n-type polymer transistors. Journal of Materials Chemistry C, 2021, 9, 12281-12290.	2.7	5
57	Small-Molecule Donor/Polymer Acceptor Type Organic Solar Cells: Effect of Terminal Groups of Small-Molecule Donors. Organic Materials, 2019, 01, 088-094.	1.0	4
58	A high molecular weight organometallic conjugated polymer incorporated with Hg(<scp>ii</scp>). Chemical Communications, 2020, 56, 5701-5704.	2.2	4
59	Panchromatic Organoboron Molecules with Tunable Absorption Spectra. Chemistry - an Asian Journal, 2020, 15, 3314-3320.	1.7	3
60	Resonating B, N Covalent Bond and Coordination Bond in Aromatic Compounds and Conjugated Polymers. Angewandte Chemie, 0, , .	1.6	2
61	An n-type narrow-bandgap organoboron polymer with quinoidal character synthesized by direct arylation polymerization. Journal of Materials Chemistry C, 2022, 10, 2718-2723.	2.7	1