Julia A Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7892694/publications.pdf Version: 2024-02-01

LILLA A KLEIN

#	Article	IF	CITATIONS
1	From The Cover: Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1342-1346.	7.1	1,060
2	Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 2012, 15, 164-175.	6.4	764
3	Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2012, 2, 453-457.	18.8	745
4	Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters, 2004, 7, 1170-1179.	6.4	456
5	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	27.8	451
6	Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters, 2007, 10, 619-627.	6.4	379
7	EXPERIMENTAL WARMING, NOT GRAZING, DECREASES RANGELAND QUALITY ON THE TIBETAN PLATEAU. , 2007, 17, 541-557.		328
8	Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global Change Biology, 2013, 19, 459-472.	9.5	197
9	Unexpected climate impacts on the Tibetan Plateau: Local and scientific knowledge in findings of delayed summer. Global Environmental Change, 2014, 28, 141-152.	7.8	109
10	Dynamic and complex microclimate responses to warming and grazing manipulations. Global Change Biology, 2005, 11, 1440-1451.	9.5	108
11	Decline in Medicinal and Forage Species with Warming is Mediated by Plant Traits on the Tibetan Plateau. Ecosystems, 2008, 11, 775-789.	3.4	85
12	Warming and land use change concurrently erode ecosystem services in Tibet. Global Change Biology, 2018, 24, 5534-5548.	9.5	83
13	An integrated community and ecosystem-based approach to disaster risk reduction in mountain systems. Environmental Science and Policy, 2019, 94, 143-152.	4.9	76
14	Placing Transdisciplinarity in Context: A Review of Approaches to Connect Scholars, Society and Action. Sustainability, 2019, 11, 4899.	3.2	75
15	Tibetan Pastoralists' Vulnerability to Climate Change: A Political Ecology Analysis of Snowstorm Coping Capacity. Human Ecology, 2014, 42, 61-74.	1.4	71
16	Growing Season Length and Soil Moisture Interactively Constrain High Elevation Aboveground Net Primary Production. Ecosystems, 2011, 14, 963-974.	3.4	68
17	Catalyzing Transformations to Sustainability in the World's Mountains. Earth's Future, 2019, 7, 547-557.	6.3	65
18	Plant Species Richness, Evenness, and Composition along Environmental Gradients in an Alpine Meadow Grazing Ecosystem in Central Tibet, China. Arctic, Antarctic, and Alpine Research, 2014, 46, 308-326.	1.1	61

Julia A Klein

#	Article	IF	CITATIONS
19	Science with society: Evidence-based guidance for best practices in environmental transdisciplinary work. Global Environmental Change, 2021, 68, 102240.	7.8	56
20	Permafrost and drought regulate vulnerability of Tibetan Plateau grasslands to warming. Ecosphere, 2018, 9, e02233.	2.2	53
21	Recovery of plant species diversity during long-term experimental warming of a species-rich alpine meadow community on the Qinghai-Tibet plateau. Biological Conservation, 2017, 213, 218-224.	4.1	48
22	Local knowledge production, transmission, and the importance of village leaders in a network of Tibetan pastoralists coping with environmental change. Ecology and Society, 2016, 21, .	2.3	44
23	Impacts of climate change on flowering phenology and production in alpine plants: The importance of end of flowering. Agriculture, Ecosystems and Environment, 2020, 291, 106795.	5.3	38
24	A systematic review of participatory scenario planning to envision mountain social-ecological systems futures. Ecology and Society, 2020, 25, .	2.3	30
25	Climate Change and Water Use Partitioning by Different Plant Functional Groups in a Grassland on the Tibetan Plateau. PLoS ONE, 2013, 8, e75503.	2.5	29
26	Grazing and spring snow counteract the effects of warming on an alpine plant community in Tibet through effects on the dominant species. Agricultural and Forest Meteorology, 2018, 263, 188-197.	4.8	25
27	Coordinating Environmental Protection and Climate Change Adaptation Policy in Resource-Dependent Communities: A Case Study from the Tibetan Plateau. Advances in Global Change Research, 2011, , 423-438.	1.6	22
28	Knowledge coproduction improves understanding of environmental change in the Ethiopian highlands. Ecology and Society, 2020, 25, .	2.3	17
29	Linking model design and application for transdisciplinary approaches in social-ecological systems. Global Environmental Change, 2021, 66, 102201.	7.8	17
30	Scenario archetypes reveal risks and opportunities for global mountain futures. Global Environmental Change, 2021, 69, 102291.	7.8	17
31	Identification of root-colonizing AM fungal communities and their responses to short-term climate change and grazing on Tibetan plateau. Symbiosis, 2018, 74, 159-166.	2.3	13
32	The need for stewardship of lands exposed by deglaciation from climate change. Wiley Interdisciplinary Reviews: Climate Change, 2022, 13, .	8.1	11
33	Warming of alpine tundra enhances belowground production and shifts community towards resource acquisition traits. Ecosphere, 2020, 11, e03270.	2.2	10
34	Climate change and hunter-gatherers in montane eastern DR Congo. Climate and Development, 0, , 1-12.	3.9	10
35	Challenges for Governing Mountains Sustainably: Insights From a Global Survey. Mountain Research and Development, 2021, 41, .	1.0	10
36	Performance of two alpine plant species along environmental gradients in an alpine meadow ecosystem in central Tibet. Ecological Research, 2016, 31, 417-426.	1.5	8

#	Article	IF	CITATIONS
37	Mental models of a social-ecological system facilitate social learning among a diverse management team. Environmental Science and Policy, 2021, 122, 127-138.	4.9	6
38	Collaborative agent-based modeling for managing shrub encroachment in an Afroalpine grassland. Journal of Environmental Management, 2022, 316, 115040.	7.8	6