Mitsuhiro Kato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7892226/publications.pdf

Version: 2024-02-01

171 papers 8,831 citations

44069 48 h-index 86 g-index

173 all docs

173
docs citations

173 times ranked 13386 citing authors

#	Article	IF	CITATIONS
1	Four pedigrees with aminoacyl-tRNA synthetase abnormalities. Neurological Sciences, 2022, 43, 2765-2774.	1.9	7
2	Sirolimus for epileptic seizures associated with focal cortical dysplasia type <scp>II</scp> . Annals of Clinical and Translational Neurology, 2022, 9, 181-192.	3.7	13
3	Efficacy of ethosuximide on atonic seizures with <i>KCNB1</i> mutation. Pediatrics International, 2022, 64, e14871.	0.5	1
4	A case of epilepsy of infancy with migrating focal seizures caused by mosaic <i>SCN2A</i> mutation. Epilepsy and Seizure, 2022, 14, 17-24.	0.2	0
5	Phenotypic and genetic spectrum of ATP6V1A encephalopathy: a disorder of lysosomal homeostasis. Brain, 2022, 145, 2687-2703.	7.6	11
6	Large-scale discovery of novel neurodevelopmental disorder-related genes through a unified analysis of single-nucleotide and copy number variants. Genome Medicine, 2022, 14, 40.	8.2	13
7	Monogenic causes of pigmentary mosaicism. Human Genetics, 2022, , .	3 . 8	2
8	Prenatal clinical manifestations in individuals with <i>COL4A1/2</i> variants. Journal of Medical Genetics, 2021, 58, 505-513.	3.2	22
9	Polymicrogyria with calcification in Pallister-Killian syndrome detected by microarray analysis. Brain and Development, 2021, 43, 448-453.	1.1	3
10	Efficient detection of copyâ€number variations using exome data: Batchâ€and sexâ€based analyses. Human Mutation, 2021, 42, 50-65.	2.5	18
11	Association of early-onset epileptic encephalopathy with involuntary movements – Case series and literature review. Epilepsy and Behavior Reports, 2021, 15, 100417.	1.0	4
12	Dopaminergic restoration of prefrontal cortico-putaminal network in gene therapy for aromatic <scp> </scp> -amino acid decarboxylase deficiency. Brain Communications, 2021, 3, fcab078.	3.3	12
13	Limb-clasping, cognitive deficit and increased vulnerability to kainic acid-induced seizures in neuronal glycosylphosphatidylinositol deficiency mouse models. Human Molecular Genetics, 2021, 30, 758-770.	2.9	7
14	ATP6VOA1 encoding the a1-subunit of the V0 domain of vacuolar H+-ATPases is essential for brain development in humans and mice. Nature Communications, 2021, 12, 2107.	12.8	30
15	Clinical manifestations and epilepsy treatment in Japanese patients with pathogenic CDKL5 variants. Brain and Development, 2021, 43, 505-514.	1.1	14
16	Missense and truncating variants in CHD5 in a dominant neurodevelopmental disorder with intellectual disability, behavioral disturbances, and epilepsy. Human Genetics, 2021, 140, 1109-1120.	3.8	18
17	Comprehensive genetic analysis confers high diagnostic yield in 16 Japanese patients with corpus callosum anomalies. Journal of Human Genetics, 2021, 66, 1061-1068.	2.3	4
18	Epileptic encephalopathy patients with <i>SCN2A</i> variant initiated by neonatal seizure. Pediatrics International, 2021, 63, 971-972.	0.5	2

#	Article	IF	CITATIONS
19	A boy with biallelic frameshift variants in TTC5 and brain malformation resembling tubulinopathies. Journal of Human Genetics, 2021, 66, 1189-1192.	2.3	1
20	Cerebrospinal fluid abnormalities in developmental and epileptic encephalopathy with a de novo CDK19 variant. Neurology: Genetics, 2020, 6, e527.	1.9	1
21	<scp>AADC</scp> deficiency from infancy to adulthood: Symptoms and developmental outcome in an international cohort of 63 patients. Journal of Inherited Metabolic Disease, 2020, 43, 1121-1130.	3.6	59
22	De novo variants in CUL3 are associated with global developmental delays with or without infantile spasms. Journal of Human Genetics, 2020, 65, 727-734.	2.3	23
23	Pathogenic variants of <i>DYNC2H1</i> , <i>KIAA0556</i> , and <i>PTPN11</i> associated with hypothalamic hamartoma. Neurology, 2019, 93, e237-e251.	1.1	24
24	A de novo variant in RAC3 causes severe global developmental delay and a middle interhemispheric variant of holoprosencephaly. Journal of Human Genetics, 2019, 64, 1127-1132.	2.3	16
25	Gene therapy improves motor and mental function of aromatic l-amino acid decarboxylase deficiency. Brain, 2019, 142, 322-333.	7.6	116
26	Comprehensive analysis of coding variants highlights genetic complexity in developmental and epileptic encephalopathy. Nature Communications, 2019, 10, 2506.	12.8	46
27	A missense variant of SMC1A causes periodic pharmaco-resistant cluster seizures similar to PCDH19-related epilepsy. Epilepsy Research, 2019, 155, 106149.	1.6	10
28	A novel de novo frameshift variant in SETD1B causes epilepsy. Journal of Human Genetics, 2019, 64, 821-827.	2.3	13
29	<i>MYCN</i> de novo gain-of-function mutation in a patient with a novel megalencephaly syndrome. Journal of Medical Genetics, 2019, 56, 388-395.	3.2	12
30	The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin–Siris syndrome. Genetics in Medicine, 2019, 21, 1295-1307.	2.4	80
31	A Single-Arm Open-Label Clinical Trial on the Efficacy and Safety of Sirolimus for Epileptic Seizures Associated with Focal Cortical Dysplasia Type II: A Study Protocol. Kurume Medical Journal, 2019, 66, 115-120.	0.1	2
32	De novo hotspot variants in <i>CYFIP2</i> cause earlyâ€onset epileptic encephalopathy. Annals of Neurology, 2018, 83, 794-806.	5.3	60
33	<i>De novo</i> variants in <i><scp>CAMK</scp>2A</i> and <i><scp>CAMK</scp>2B</i> cause neurodevelopmental disorders. Annals of Clinical and Translational Neurology, 2018, 5, 280-296.	3.7	65
34	De novo mutations of the ATP6V1A gene cause developmental encephalopathy with epilepsy. Brain, 2018, 141, 1703-1718.	7.6	69
35	IMSindel: An accurate intermediate-size indel detection tool incorporating de novo assembly and gapped global-local alignment with split read analysis. Scientific Reports, 2018, 8, 5608.	3.3	20
36	Biallelic Variants in CNPY3, Encoding an Endoplasmic Reticulum Chaperone, Cause Early-Onset Epileptic Encephalopathy. American Journal of Human Genetics, 2018, 102, 321-329.	6.2	17

#	Article	IF	Citations
37	Loss-of-function and gain-of-function mutations in PPP3CA cause two distinct disorders. Human Molecular Genetics, 2018, 27, 1421-1433.	2.9	36
38	De novo variants in SETD1B are associated with intellectual disability, epilepsy and autism. Human Genetics, 2018, 137, 95-104.	3.8	60
39	l -Thyroxine-responsive drop attacks in childhood benign hereditary chorea: A case report. Brain and Development, 2018, 40, 353-356.	1.1	5
40	Progressive subglottic stenosis in a child with <scp>P</scp> allisterâ€ <scp>K</scp> illian syndrome. Congenital Anomalies (discontinued), 2018, 58, 102-104.	0.6	5
41	Biallelic lossâ€ofâ€function <i>UBA5</i> mutations in a patient with intractable West syndrome and profound failure to thrive. Epileptic Disorders, 2018, 20, 313-318.	1.3	18
42	<i><scp>PLPBP</scp></i> mutations cause variable phenotypes of developmental and epileptic encephalopathy. Epilepsia Open, 2018, 3, 495-502.	2.4	27
43	De novo PHACTR1 mutations in West syndrome and their pathophysiological effects. Brain, 2018, 141, 3098-3114.	7.6	21
44	A variant at $9q34.11$ is associated with HLA-DQB1*06:02Ânegative essential hypersomnia. Journal of Human Genetics, 2018, 63, 1259-1267.	2.3	5
45	Integrative Analyses of De Novo Mutations Provide Deeper Biological Insights into Autism Spectrum Disorder. Cell Reports, 2018, 22, 734-747.	6.4	132
46	A recurrent homozygous NHLRC1 variant in siblings with Lafora disease. Human Genome Variation, 2018, 5, 16.	0.7	13
47	A novel homozygous missense mutation in the SH3-binding motif of STAMBP causing microcephaly-capillary malformation syndrome. Journal of Human Genetics, 2018, 63, 957-963.	2.3	10
48	A case of tubulinopathy presenting with porencephaly caused by a novel missense mutation in the TUBA1A gene. Brain and Development, 2018, 40, 819-823.	1.1	8
49	PARS2 and NARS2 mutations in infantile-onset neurodegenerative disorder. Journal of Human Genetics, 2017, 62, 525-529.	2.3	55
50	Novel MCA/ID syndrome with <i>ASH1L</i> mutation. American Journal of Medical Genetics, Part A, 2017, 173, 1644-1648.	1,2	27
51	Role of a heterotrimeric Gâ€protein, Gi2, in the corticogenesis: possible involvement in periventricular nodular heterotopia and intellectual disability. Journal of Neurochemistry, 2017, 140, 82-95.	3.9	13
52	A novel missense mutation in the HECT domain of NEDD4L identified in a girl with periventricular nodular heterotopia, polymicrogyria and cleft palate. Journal of Human Genetics, 2017, 62, 861-863.	2.3	22
53	Defects in autophagosome-lysosome fusion underlie Vici syndrome, a neurodevelopmental disorder with multisystem involvement. Scientific Reports, 2017, 7, 3552.	3.3	46
54	A severe pulmonary complication in a patient with COL4A1 -related disorder: A case report. European Journal of Medical Genetics, 2017, 60, 169-171.	1.3	11

#	Article	IF	CITATIONS
55	Delineating SPTAN1 associated phenotypes: from isolated epilepsy to encephalopathy with progressive brain atrophy. Brain, 2017, 140, 2322-2336.	7.6	82
56	A novel genetic syndrome with <i>STARD9</i> mutation and abnormal spindle morphology. American Journal of Medical Genetics, Part A, 2017, 173, 2690-2696.	1.2	7
57	Siblings with optic neuropathy and RTN4IP1 mutation. Journal of Human Genetics, 2017, 62, 927-929.	2.3	8
58	A combination of genetic and biochemical analyses for the diagnosis of PI3K-AKT-mTOR pathway-associated megalencephaly. BMC Medical Genetics, 2017, 18, 4.	2.1	21
59	A case of early onset epileptic encephalopathy with de novo mutation in SLC35A2: Clinical features and treatment for epilepsy. Brain and Development, 2017, 39, 256-260.	1.1	27
60	Mislocalization of syntaxinâ€1 and impaired neurite growth observed in a human <scp>iPSC</scp> model for <i><scp>STXBP</scp>1</i> â€related epileptic encephalopathy. Epilepsia, 2016, 57, e81-6.	5.1	37
61	Novel splicing mutation in the <i>ASXL3</i> gene causing Bainbridge–Ropers syndrome. American Journal of Medical Genetics, Part A, 2016, 170, 1863-1867.	1.2	28
62	In vitro characterization of neurite extension using induced pluripotent stem cells derived from lissencephaly patients with TUBA1A missense mutations. Molecular Brain, 2016, 9, 70.	2.6	22
63	Impaired neuronal KCC2 function by biallelic SLC12A5 mutations in migrating focal seizures and severe developmental delay. Scientific Reports, 2016, 6, 30072.	3.3	102
64	A Mutation in the Tubulin-Encoding <i>TUBB3</i> Gene Causes Complex Cortical Malformations and Unilateral Hypohidrosis. Child Neurology Open, 2016, 3, 2329048X1666575.	1.1	9
65	WDR45 mutations in three male patients with West syndrome. Journal of Human Genetics, 2016, 61, 653-661.	2.3	39
66	Novel compound heterozygous variants in PLK4 identified in a patient with autosomal recessive microcephaly and chorioretinopathy. European Journal of Human Genetics, 2016, 24, 1702-1706.	2.8	12
67	Biallelic TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy. American Journal of Human Genetics, 2016, 99, 950-961.	6.2	51
68	Megalencephaly, polymicrogyria and ribbon-like band heterotopia: A new cortical malformation. Brain and Development, 2016, 38, 950-953.	1.1	6
69	Somatic mutations in <i> <scp>GLI</scp> 3 </i> and <i> <scp>OFD</scp> 1 </i> involved in sonic hedgehog signaling cause hypothalamic hamartoma. Annals of Clinical and Translational Neurology, 2016, 3, 356-365.	3.7	42
70	Autosomal-Recessive Mutations in AP3B2, Adaptor-Related Protein Complex 3 Beta 2 Subunit, Cause an Early-Onset Epileptic Encephalopathy with Optic Atrophy. American Journal of Human Genetics, 2016, 99, 1368-1376.	6.2	46
71	De novo <i>GABRA1</i> mutations in Ohtahara and West syndromes. Epilepsia, 2016, 57, 566-573.	5.1	76
72	Asymptomatic congenital cytomegalovirus infection with neurological sequelae: A retrospective study using umbilical cord. Brain and Development, 2016, 38, 819-826.	1.1	27

#	Article	IF	CITATIONS
73	Pathogenic Variants in PIGG Cause Intellectual Disability with Seizures and Hypotonia. American Journal of Human Genetics, 2016, 98, 615-626.	6.2	71
74	High prevalence of genetic alterations in early-onset epileptic encephalopathies associated with infantile movement disorders. Brain and Development, 2016, 38, 285-292.	1.1	54
75	<i><scp>GRIN</scp>1</i> mutations cause encephalopathy with infantileâ€onset epilepsy, and hyperkinetic and stereotyped movement disorders. Epilepsia, 2015, 56, 841-848.	5.1	76
76	TUBA1A mutation can cause a hydranencephaly-like severe form of cortical dysgenesis. Scientific Reports, 2015, 5, 15165.	3.3	23
77	De novo KCNB1 mutations in infantile epilepsy inhibit repetitive neuronal firing. Scientific Reports, 2015, 5, 15199.	3.3	73
78	Truncating mutation in NFIA causes brain malformation and urinary tract defects. Human Genome Variation, 2015, 2, 15007.	0.7	24
79	An association analysis of HLA-DQB1 with narcolepsy without cataplexy and idiopathic hypersomnia with/without long sleep time in a Japanese population. Human Genome Variation, 2015, 2, 15031.	0.7	19
80	A combination of targeted enrichment methodologies for whole-exome sequencing reveals novel pathogenic mutations. Scientific Reports, 2015, 5, 9331.	3.3	14
81	De novo <i><scp>KCNT</scp>1</i> mutations in earlyâ€onset epileptic encephalopathy. Epilepsia, 2015, 56, e121-8.	5.1	95
82	Somatic Mutations in the <scp><i>MTOR</i></scp> gene cause focal cortical dysplasia type <scp>II</scp> b. Annals of Neurology, 2015, 78, 375-386.	5.3	169
83	Two siblings with cortical dysplasia: Clinicoâ€electroencephalographic features. Pediatrics International, 2015, 57, 472-475.	0.5	0
84	Genotype-phenotype correlation in neuronal migration disorders and cortical dysplasias. Frontiers in Neuroscience, 2015, 9, 181.	2.8	52
85	Efficacy of long term weekly ACTH therapy for intractable epilepsy. Brain and Development, 2015, 37, 449-454.	1.1	16
86	Primary Microcephaly With Anterior Predominant Pachygyria Caused by Novel Compound Heterozygous Mutations in ASPM. Pediatric Neurology, 2015, 52, e7-e8.	2.1	6
87	Sudden death in a case of megalencephaly capillary malformation associated with a de novo mutation in AKT3. Child's Nervous System, 2015, 31, 465-471.	1.1	10
88	SPTAN1 encephalopathy: distinct phenotypes and genotypes. Journal of Human Genetics, 2015, 60, 167-173.	2.3	83
89	Novel <i>><scp>DCX</scp></i> mutationâ€eaused lissencephaly in a boy and very mild heterotopia in his mother. Pediatrics International, 2015, 57, 321-323.	0.5	2
90	New susceptibility variants to narcolepsy identified in HLA class II region. Human Molecular Genetics, 2015, 24, 891-898.	2.9	27

#	Article	lF	Citations
91	A girl with West syndrome and autistic features harboring a de novo TBL1XR1 mutation. Journal of Human Genetics, 2014, 59, 581-583.	2.3	42
92	<i>PIGA</i> mutations cause early-onset epileptic encephalopathies and distinctive features. Neurology, 2014, 82, 1587-1596.	1.1	93
93	Abnormal pupillary light reflex with chromatic pupillometry in <scp>G</scp> aucher disease. Annals of Clinical and Translational Neurology, 2014, 1, 135-140.	3.7	14
94	Is focal cortical dysplasia sporadic? Family evidence for genetic susceptibility. Epilepsia, 2014, 55, e22-6.	5.1	23
95	The somatic GNAQ mutation c.548G>A (p.R183Q) is consistently found in Sturge–Weber syndrome. Journal of Human Genetics, 2014, 59, 691-693.	2.3	100
96	Serum and CSF biomarkers in acute pediatric neurological disorders. Brain and Development, 2014, 36, 489-495.	1.1	10
97	Novel compound heterozygous PIGT mutations caused multiple congenital anomalies-hypotonia-seizures syndrome 3. Neurogenetics, 2014, 15, 193-200.	1.4	61
98	Early onset epileptic encephalopathy caused by de novo <i><scp>SCN</scp>8A</i> mutations. Epilepsia, 2014, 55, 994-1000.	5.1	142
99	KIF1A mutation in a patient with progressive neurodegeneration. Journal of Human Genetics, 2014, 59, 639-641.	2.3	53
100	Compound heterozygosity in GPR56 with bilateral frontoparietal polymicrogyria. Brain and Development, 2014, 36, 528-531.	1.1	17
101	A case of TUBA1A mutation presenting with lissencephaly and Hirschsprung disease. Brain and Development, 2014, 36, 159-162.	1.1	22
102	De Novo Mutations in GNAO1, Encoding a GÎ \pm o Subunit of Heterotrimeric G Proteins, Cause Epileptic Encephalopathy. American Journal of Human Genetics, 2013, 93, 496-505.	6.2	187
103	Targeted capture and sequencing for detection of mutations causing early onset epileptic encephalopathy. Epilepsia, 2013, 54, 1262-1269.	5.1	76
104	De Novo Mutations in <i>SLC35A2</i> Encoding a UDP-Galactose Transporter Cause Early-Onset Epileptic Encephalopathy. Human Mutation, 2013, 34, 1708-1714.	2.5	85
105	Clinical spectrum of early onset epileptic encephalopathies caused by <scp><i>KCNQ2</i></scp> mutation. Epilepsia, 2013, 54, 1282-1287.	5.1	195
106	De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nature Genetics, 2013, 45, 445-449.	21.4	396
107	Clinical correlations of mutations affecting six components of the <scp>SWI</scp> / <scp>SNF</scp> complex: Detailed description of 21 patients and a review of the literature. American Journal of Medical Genetics, Part A, 2013, 161, 1221-1237.	1.2	91
108	PCDH19-related female-limited epilepsy: Further details regarding early clinical features and therapeutic efficacy. Epilepsy Research, 2013, 106, 191-199.	1.6	52

#	Article	IF	CITATIONS
109	Phenotypic Spectrum of <i>COL4A1</i> Mutations: Porencephaly to Schizencephaly. Annals of Neurology, 2013, 73, 48-57.	5.3	143
110	Clinical spectrum of <i>SCN2A</i> mutations expanding to Ohtahara syndrome. Neurology, 2013, 81, 992-998.	1.1	188
111	Brain Malformations and Genetic Factors. Japanese Journal of Neurosurgery, 2013, 22, 252-255.	0.0	0
112	<i>CASK</i> aberrations in male patients with Ohtahara syndrome and cerebellar hypoplasia. Epilepsia, 2012, 53, 1441-1449.	5.1	66
113	Respiratory syncytial virusâ€associated encephalopathy complicated by congenital myopathy. Pediatrics International, 2012, 54, 709-711.	0.5	6
114	Whole exome sequencing identifies <i>KCNQ2</i> mutations in Ohtahara syndrome. Annals of Neurology, 2012, 72, 298-300.	5.3	88
115	Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nature Genetics, 2012, 44, 376-378.	21.4	435
116	Congenital Dysplastic Microcephaly and Hypoplasia of the Brainstem and Cerebellum With Diffuse Intracranial Calcification. Journal of Child Neurology, 2012, 27, 218-221.	1.4	4
117	The incidence of hypoplasia of the corpus callosum in patients with dup (X)(q28) involving <i>MECP2</i> is associated with the location of distal breakpoints. American Journal of Medical Genetics, Part A, 2012, 158A, 1292-1303.	1.2	14
118	De Novo and Inherited Mutations in COL4A2, Encoding the Type IV Collagen $\hat{l}\pm 2$ Chain Cause Porencephaly. American Journal of Human Genetics, 2012, 90, 86-90.	6.2	79
119	Unusual ribbonâ€like periventricular heterotopia with congenital cataracts in a Japanese girl. American Journal of Medical Genetics, Part A, 2012, 158A, 674-677.	1.2	1
120	Early infantile epileptic encephalopathy associated with the disrupted gene encoding Slitâ€Robo Rho GTPase activating protein 2 (<i>SRGAP2</i>). American Journal of Medical Genetics, Part A, 2012, 158A, 199-205.	1.2	31
121	Inflammatory changes in infantile-onset LMNA-associated myopathy. Neuromuscular Disorders, 2011, 21, 563-568.	0.6	67
122	De novo 5q14.3 translocation 121.5â€kb upstream of <i>MEF2C</i> in a patient with severe intellectual disability and earlyâ€onset epileptic encephalopathy. American Journal of Medical Genetics, Part A, 2011, 155, 2879-2884.	1.2	26
123	Going BAC or oligo microarray to the well: A commentary on Clinical application of array-based comparative genomic hybridization by two-stage screening for 536 patients with mental retardation and multiple congenital anomalies. Journal of Human Genetics, 2011, 56, 104-105.	2.3	1
124	Dominant-Negative Mutations in α-II Spectrin Cause West Syndrome with Severe Cerebral Hypomyelination, Spastic Quadriplegia, and Developmental Delay. American Journal of Human Genetics, 2010, 86, 881-891.	6.2	131
125	A case of Baraitser–Winter syndrome with unusual brain MRI findings: Pachygyria, subcortical-band heterotopia, and periventricular heterotopia. Brain and Development, 2010, 32, 502-505.	1.1	13
126	Abnormal glucose metabolism in aromatic l-amino acid decarboxylase deficiency. Brain and Development, 2010, 32, 506-510.	1.1	14

#	Article	IF	CITATIONS
127	Choreo–ballistic movements in a case carrying a missense mutation in syntaxin binding protein 1 gene. Movement Disorders, 2010, 25, 2265-2267.	3.9	7
128	<i>STXBP1</i> mutations in early infantile epileptic encephalopathy with suppressionâ€burst pattern. Epilepsia, 2010, 51, 2397-2405.	5.1	133
129	Haploinsufficiency of STXBP1 and Ohtahara syndrome. Epilepsia, 2010, 51, 71-71.	5.1	10
130	Compound heterozygous PMP22 deletion mutations causing severe Charcot–Marie–Tooth disease type 1. Journal of Human Genetics, 2010, 55, 771-773.	2.3	15
131	Two female siblings with West syndrome: Familial idiopathic West syndrome with genetic susceptibility and variable phenotypic expression. Journal of Pediatric Neurosciences, 2010, 5, 147.	0.3	0
132	Molecular karyotyping in 17 patients and mutation screening in 41 patients with Kabuki syndrome. Journal of Human Genetics, 2009, 54, 304-309.	2.3	37
133	Maternal Uniparental Disomy 14 Syndrome Demonstrates Prader-Willi Syndrome-Like Phenotype. Journal of Pediatrics, 2009, 155, 900-903.e1.	1.8	46
134	Analysis of the hypothalamus in a case of X-linked lissencephaly with abnormal genitalia (XLAG). Brain and Development, 2009, 31, 456-460.	1.1	17
135	De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nature Genetics, 2008, 40, 782-788.	21.4	498
136	Early onset West syndrome with cerebral hypomyelination and reduced cerebral white matter. Brain and Development, 2008, 30, 349-355.	1.1	35
137	Megalencephaly and Polymicrogyria with Polydactyly Syndrome. Pediatric Neurology, 2007, 37, 148-151.	2.1	19
138	A Longer Polyalanine Expansion Mutation in the ARX Gene Causes Early Infantile Epileptic Encephalopathy with Suppression-Burst Pattern (Ohtahara Syndrome). American Journal of Human Genetics, 2007, 81, 361-366.	6.2	168
139	Clinical and molecular cytogenetic characterization of two patients with non-mutational aberrations of the FMR2 gene. American Journal of Medical Genetics, Part A, 2007, 143A, 687-693.	1.2	15
140	A case of acute cerebellitis accompanied by autoantibodies against glutamate receptor Î'2. Brain and Development, 2007, 29, 224-226.	1.1	45
141	Acute cerebellar ataxia and consecutive cerebellitis produced by glutamate receptor δ2 autoantibody. Brain and Development, 2007, 29, 254-256.	1.1	68
142	Acute encephalopathy with refractory status epilepticus: Bilateral mesial temporal and claustral lesions, associated with a peripheral marker of oxidative DNA damage. Journal of the Neurological Sciences, 2006, 250, 159-161.	0.6	23
143	Magnetoencephalography in Patients with Tuberous Sclerosis and Localization-related Epilepsy. Epilepsia, 2006, 47, 991-997.	5.1	47
144	A new paradigm for West syndrome based on molecular and cell biology. Epilepsy Research, 2006, 70, 87-95.	1.6	54

#	Article	IF	CITATIONS
145	No detectable genomic aberrations by BAC array CGH in Kabuki make-up syndrome patients. American Journal of Medical Genetics, Part A, 2006, 140A, 291-293.	1.2	19
146	BAC array CGH reveals genomic aberrations in idiopathic mental retardation. American Journal of Medical Genetics, Part A, 2006, 140A, 205-211.	1.2	57
147	X-Linked Lissencephaly With Abnormal Genitalia as a Tangential Migration Disorder Causing Intractable Epilepsy: Proposal for a New Term, "Interneuronopathy― Journal of Child Neurology, 2005, 20, 392-397.	1.4	143
148	Costello Syndrome Showing Moyamoya-like Vasculopathy. Pediatric Neurology, 2005, 32, 361-363.	2.1	19
149	Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Human Mutation, 2004, 23, 147-159.	2.5	293
150	Asymptomatic hereditary Alexander's disease caused by a novel mutation in GFAP. Journal of the Neurological Sciences, 2004, 225, 125-127.	0.6	26
151	Lissencephaly and the molecular basis of neuronal migration. Human Molecular Genetics, 2003, 12, 89R-96.	2.9	274
152	Microcephaly, Cerebellar Atrophy, and Focal Segmental Glomerulosclerosis in Two Brothers: A Possible Mild Form of Galloway-Mowat Syndrome. Journal of Child Neurology, 2003, 18, 147-149.	1.4	16
153	Progressive Sliding Hiatal Hernia as a Complication of Menkes' Syndrome. Journal of Child Neurology, 2002, 17, 401-402.	1.4	9
154	Fluctuation of Computed Tomographic Findings in White Matter in Alexander's Disease. Journal of Child Neurology, 2002, 17, 227-230.	1.4	15
155	Contrast Sensitivity of Patients With Severe Motor and Intellectual Disabilities and Cerebral Visual Impairment. Journal of Child Neurology, 2002, 17, 731-737.	1.4	17
156	Cerebrospinal fluid levels of cytokines and soluble tumour necrosis factor receptor in acute disseminated encephalomyelitis. European Journal of Pediatrics, 2002, 161, 133-137.	2.7	58
157	Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nature Genetics, 2002, 32, 359-369.	21.4	647
158	Mutation of the doublecortin gene in male patients with double cortex syndrome: Somatic mosaicism detected by hair root analysis. Annals of Neurology, 2001, 50, 547-551.	5. 3	47
159	Sonic hedgehog signal peptide mutation in a patient with holoprosencephaly. Annals of Neurology, 2000, 47, 514-516.	5. 3	13
160	Diffuse pachygyria with cerebellar hypoplasia: A milder form of microlissencephaly or a new genetic syndrome?. Annals of Neurology, 1999, 46, 660-663.	5.3	19
161	Loss of Neurofibromin in the Leptomeningeal Astroglial Heterotopia of NF-1. Pediatric Neurology, 1998, 18, 227-230.	2.1	5
162	Brainstem lesion in Aicardi-Goutières syndrome. Pediatric Neurology, 1998, 19, 145-147.	2.1	10

#	Article	IF	CITATIONS
163	Tuberin immunohistochemistry in brain, kidneys and heart with or without tuberous sclerosis. Acta Neuropathologica, 1997, 94, 525-531.	7.7	41
164	Hypertrophy of the cerebral white matter in hemimegalencephaly. Pediatric Neurology, 1996, 14, 335-338.	2.1	23
165	A tyrosine kinase-like molecule is localized in the nuclear membrane of neurons: Hippocampal behavior under stress*. Biology of the Cell, 1996, 88, 45-54.	2.0	3
166	Loss of tuberin from cerebral tissues with tuberous sclerosis and astrocytoma. Annals of Neurology, 1996, 40, 941-944.	5. 3	49
167	Developmental changes of heat shock protein 73 in human brain. Developmental Brain Research, 1995, 86, 180-186.	1.7	15
168	Immunohistochemical and morphometrical development of the dorsal root ganglion as a neural crest derivative: Comparison with the fetal CNS. Early Human Development, 1994, 38, 81-90.	1.8	9
169	High Expression on Kunitz-Type Protease Inhibitor-Containing Substances in the Cerebral Vessels of Patients with Down Syndrome Tohoku Journal of Experimental Medicine, 1994, 174, 181-187.	1.2	7
170	Neural Crest and Central Nervous System Malformation. Congenital Anomalies (discontinued), 1993, 33, 327-335.	0.6	1
171	The â€~double cortex' syndrome Commentary to Hashimoto's paper (pp. 57-9). Brain and Development, 1993 15, 83-84.	, 1.1	6