Vsevolod A Peshkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/789219/publications.pdf

Version: 2024-02-01

50 papers 1,725 citations

331670 21 h-index 276875 41 g-index

74 all docs

74 docs citations

74 times ranked 1885 citing authors

#	Article	IF	CITATIONS
1	Transition metal-free selective C–S bond cleavage of Ugi-adducts for rapid preparation of peptidomimetics. Green Chemistry, 2022, 24, 2783-2787.	9.0	4
2	Multicomponent Assembly of Trisubstituted Imidazoles and Their Photochemical Cyclization into Fused Polyheterocyclic Scaffolds. Journal of Organic Chemistry, 2022, 87, 7838-7851.	3.2	8
3	Transmol: repurposing a language model for molecular generation. RSC Advances, 2021, 11, 25921-25932.	3.6	4
4	Threeâ€Component Castagnoliâ€Cushman Reaction of 3â€Arylglutaconic Acid Anhydrides, Carbonyl Compounds, and Ammonium Acetate: a Quick and Flexible Way to Assemble Polysubstituted NH â€Îâ€lactams. European Journal of Organic Chemistry, 2021, 2021, 1726-1731.	2.4	1
5	Palladium-Catalyzed Arylative Dearomatization and Subsequent Aromatization/Dearomatization/Aza-Michael Addition: Access to Zephycarinatine and Zephygranditine Skeletons. Organic Letters, 2021, 23, 5065-5070.	4.6	29
6	Facile construction of peptidomimetics by sequential C–S/C–N bond activation of Ugi-adducts. Organic Chemistry Frontiers, 2021, 8, 6968-6973.	4.5	3
7	Palladium-catalyzed post-Ugi arylative dearomatization/Michael addition cascade towards plicamine analogues. Organic and Biomolecular Chemistry, 2021, 19, 9752-9757.	2.8	10
8	Silver(I) Triflateâ€Catalyzed Protocol for the Postâ€Ugi Synthesis of Spiroindolines. Advanced Synthesis and Catalysis, 2020, 362, 261-268.	4.3	21
9	Controlling the stereochemistry in 2-oxo-aldehyde-derived Ugi adducts through the cinchona alkaloid-promoted electrophilic fluorination. Beilstein Journal of Organic Chemistry, 2020, 16, 1963-1973.	2.2	2
10	Three-component reaction of azulene, aryl glyoxal and 1,3-dicarbonyl compound for the synthesis of various azulene derivatives. RSC Advances, 2020, 10, 10113-10117.	3.6	6
11	Fourâ€Component Oneâ€Pot Process Involving Passerini Reaction Followed by Aldol Addition and Transesterification. European Journal of Organic Chemistry, 2020, 2020, 3378-3389.	2.4	5
12	cheML.io: an online database of ML-generated molecules. RSC Advances, 2020, 10, 45189-45198.	3.6	4
13	Enantioselective Assembly of Tricyclic Tetrahydroquinoline Derivatives. ChemistrySelect, 2019, 4, 8797-8799.	1.5	11
14	Goldâ€Catalyzed Postâ€Ugi Cascade Transformation for the Synthesis of 2â€Pyridones. European Journal of Organic Chemistry, 2019, 2019, 2502-2507.	2.4	12
15	Studies on Functionalization of N,Oâ€Chelated Isoquinolineâ€Enol Boron Complexes. European Journal of Organic Chemistry, 2019, 2019, 2490-2497.	2.4	7
16	Copperâ€Catalyzed Reaction of Secondary Propargylamines with Ethyl Butaâ€2,3â€dienoate for the Synthesis of 1,6â€Dihydropyridines. European Journal of Organic Chemistry, 2019, 2019, 1981-1985.	2.4	9
17	Reactions of secondary propargylamines with heteroallenes for the synthesis of diverse heterocycles. Chemical Society Reviews, 2018, 47, 3861-3898.	38.1	109
18	Differentiating alkyne reactivity in the post-Ugi transformations: Access to polycyclic indole-fused frameworks. Tetrahedron Letters, 2018, 59, 1823-1827.	1.4	16

#	Article	IF	CITATIONS
19	Gold-catalyzed post-Ugi alkyne hydroarylation for the synthesis of 2-quinolones. Beilstein Journal of Organic Chemistry, 2018, 14, 2572-2579.	2.2	15
20	Gold-Catalyzed Post-Ugi Ipso-Cyclization with Switchable Diastereoselectivity. Journal of Organic Chemistry, 2018, 83, 8170-8182.	3.2	39
21	Boron Complexes of Glyoxalâ€Derived Ugi Adducts as a New Class of Aggregationâ€Induced Emission Photoluminescent Materials. Chemistry - an Asian Journal, 2017, 12, 825-829.	3.3	11
22	Synthesis of Thiazolidineâ€2â€thiones through a Oneâ€Pot A ³ â€Coupling–Carbon Disulfide Incorporation Process. European Journal of Organic Chemistry, 2017, 2017, 1063-1069.	2.4	25
23	Diversity-oriented synthesis of 1,3-benzodiazepines. Tetrahedron, 2017, 73, 6372-6380.	1.9	24
24	Ugi Reaction Followed by Intramolecular Diels–Alder Reaction and Elimination of HCl: Oneâ€Pot Approach to Areneâ€Fused Isoindolinones. European Journal of Organic Chemistry, 2017, 2017, 4379-4388.	2.4	19
25	Oxidative reaction of 2-aminopyridine-3-sulfonyl chlorides with tertiary amines. Heterocyclic Communications, 2016, 22, 333-337.	1.2	2
26	The Application of Multicomponent Ugi and Passerini Reactions for the One-Pot Synthesis of Pyrrolones and Butenolides. Synthesis, 2016, 48, 2280-2286.	2.3	18
27	Optimization of pyrazole-containing 1,2,4-triazolo-[3,4-b]thiadiazines, a new class of STAT3 pathway inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3581-3585.	2.2	27
28	Allosteric Indole Amide Inhibitors of p97: Identification of a Novel Probe of the Ubiquitin Pathway. ACS Medicinal Chemistry Letters, 2016, 7, 182-187.	2.8	30
29	Synthesis of 1,8-naphthyridines from 2-aminonicotinaldehydes and terminal alkynes. Tetrahedron Letters, 2016, 57, 1958-1962.	1.4	10
30	Three-Component Reaction of 2-Oxoaldehydes, Cyclic 1,3-Dicarbonyl Compounds, and 4-Aminopyridines. Synthesis, 2016, 48, 1734-1740.	2.3	8
31	Heck–Suzuki Tandem Reaction for the Synthesis of 3-Benzazepines. Journal of Organic Chemistry, 2015, 80, 6598-6608.	3.2	32
32	Direct addition of 2-methylazines to aryl glyoxals for the synthesis of α-hydroxy ketones. Tetrahedron Letters, 2015, 56, 5231-5234.	1.4	6
33	Diversification of the 3-benzazepine scaffold applying Ugi/reductive Heck sequence. Tetrahedron, 2015, 71, 3863-3871.	1.9	31
34	Post-Ugi carbocyclization/fragmentation sequence for the synthesis of 6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ones. Tetrahedron Letters, 2015, 56, 2882-2886.	1.4	18
35	Gold―and Silverâ€Catalyzed 7â€ <i>endo</i> â€ <i>dig</i> Cyclizations for the Synthesis of Oxazepines. European Journal of Organic Chemistry, 2015, 2015, 4190-4197.	2.4	27
36	Unexpected regio- and chemoselectivity of cationic gold-catalyzed cycloisomerizations of propargylureas: access to tetrasubstituted 3,4-dihydropyrimidin-2(1H)-ones. Organic and Biomolecular Chemistry, 2014, 12, 1741.	2.8	27

#	Article	IF	CITATIONS
37	Three-Component Reaction of a 2-Aminoazine, a 2-Oxoaldehyde, and a Cyclic 1,3-Dicarbonyl Compound for the Synthesis of Imidazo[1,2- <i>a</i> i>]azine Derivatives. ACS Combinatorial Science, 2014, 16, 535-542.	3.8	27
38	Assembly of a 1 <i>H</i> â€Pyrrolâ€2(5 <i>H</i>)â€one Core through a Cascade Ugi Reaction/5â€ <i>endo</i> â€ <i>dig</i> Carbocyclization/Retroâ€Claisen Fragmentation Process. European Journal of Organic Chemistry, 2014, 2014, 6390-6393.	2.4	30
39	Cationic Goldâ€and Silverâ€Catalyzed Cycloisomerizations of Propargylic Ureas: A Selective Entry to Oxazolidinâ€2â€imines and Imidazolidinâ€2â€ones. Advanced Synthesis and Catalysis, 2013, 355, 781-789.	4.3	56
40	Fast Assembly of 1H-Imidazo[1,2-a]imidazol-5-amines via Groebke-Blackburn-Bienaym \tilde{A} Reaction with 2-Aminoimidazoles. Synlett, 2013, 24, 351-354.	1.8	16
41	Alkylation of 3,5-dichloro-2(1H)-pyrazinones using malonate esters. Tetrahedron Letters, 2012, 53, 4676-4678.	1.4	5
42	Synthesis of Azocino[5,4â€∢i>b⟨li>]indoles ⟨i>via⟨li> Gold atalyzed Intramolecular Alkyne Hydroarylation. Advanced Synthesis and Catalysis, 2012, 354, 2841-2848.	4.3	83
43	A walk around the A3-coupling. Chemical Society Reviews, 2012, 41, 3790.	38.1	617
44	Tetrasubstituted 2-Imidazolones via Ag(I)-Catalyzed Cycloisomerization of Propargylic Ureas. Journal of Organic Chemistry, 2011, 76, 5867-5872.	3.2	56
45	Synthesis of the Azocino[<i>cd</i>]indole Framework through Pdâ€Catalyzed Intramolecular Acetylene Hydroarylation. European Journal of Organic Chemistry, 2011, 2011, 1837-1840.	2.4	50
46	Diversity-Oriented Silver(I)-Mediated Synthesis of Spiro-2-aminoimidazoles. Synthesis, 2011, 2011, 1587-1594.	2.3	3
47	Synthesis of Isoquinolinium-2-yl Amides via Silver(I)-Catalyzed Ring Closure of N′-(2-Alkynylbenzylidene)hydrazides. Synthesis, 2011, 2011, 3371-3374.	2.3	5
48	Diversityâ€Oriented Microwaveâ€Assisted Synthesis of the 3â€Benzazepine Framework. European Journal of Organic Chemistry, 2010, 2010, 4861-4867.	2.4	50
49	Unprecedented Cu(I)-Catalyzed Microwave-Assisted Three-Component Coupling of a Ketone, an Alkyne, and a Primary Amine. Organic Letters, 2010, 12, 2638-2641.	4.6	95
50	A General Approach to Spirocyclic Piperidines via Castagnoli–Cushman Chemistry. Synthesis, 0, , .	2.3	1