
## NoemÃ- Santana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7892068/publications.pdf Version: 2024-02-01



Νοεμά-δαντανά

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Discrimination of motor and sensorimotor effects of phencyclidine and MK-801: Involvement of<br>GluN2C-containing NMDA receptors in psychosis-like models. Neuropharmacology, 2022, 213, 109079.                                               | 2.0  | 3         |
| 2  | In vivo glutamate clearance defects in a mouse model of Lafora disease. Experimental Neurology, 2019,<br>320, 112959.                                                                                                                          | 2.0  | 15        |
| 3  | Effects of Hallucinogens on Neuronal Activity. Current Topics in Behavioral Neurosciences, 2017, 36, 75-105.                                                                                                                                   | 0.8  | 13        |
| 4  | Defining the brain circuits involved in psychiatric disorders: IMI-NEWMEDS. Nature Reviews Drug Discovery, 2017, 16, 1-2.                                                                                                                      | 21.5 | 35        |
| 5  | Laminar and Cellular Distribution of Monoamine Receptors in Rat Medial Prefrontal Cortex. Frontiers in Neuroanatomy, 2017, 11, 87.                                                                                                             | 0.9  | 90        |
| 6  | Persistent gating deficit and increased sensitivity to NMDA receptor antagonism after puberty in a new mouse model of the human 22q11.2 microdeletion syndrome: a study in male mice. Journal of Psychiatry and Neuroscience, 2017, 42, 48-58. | 1.4  | 63        |
| 7  | Expression of Serotonin2CReceptors in Pyramidal and GABAergic Neurons of Rat Prefrontal Cortex: A<br>Comparison with Striatum. Cerebral Cortex, 2016, 27, bhw148.                                                                              | 1.6  | 20        |
| 8  | A mouse model of the 15q13.3 microdeletion syndrome shows prefrontal neurophysiological dysfunctions and attentional impairment. Psychopharmacology, 2016, 233, 2151-2163.                                                                     | 1.5  | 45        |
| 9  | PCP-based mice models of schizophrenia: differential behavioral, neurochemical and cellular effects of acute and subchronic treatments. Psychopharmacology, 2015, 232, 4085-4097.                                                              | 1.5  | 54        |
| 10 | Phencyclidine Inhibits the Activity of Thalamic Reticular Gamma-Aminobutyric Acidergic Neurons in Rat<br>Brain. Biological Psychiatry, 2014, 76, 937-945.                                                                                      | 0.7  | 40        |
| 11 | Acute 5-HT1A autoreceptor knockdown increases antidepressant responses and serotonin release in stressful conditions. Psychopharmacology, 2013, 225, 61-74.                                                                                    | 1.5  | 64        |
| 12 | Expression of α1-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT2A receptors. International Journal of Neuropsychopharmacology, 2013, 16, 1139-1151.                                                         | 1.0  | 41        |
| 13 | Disruption of thalamocortical activity in schizophrenia models: relevance to antipsychotic drug action. International Journal of Neuropsychopharmacology, 2013, 16, 2145-2163.                                                                 | 1.0  | 26        |
| 14 | 5-HT1A Receptor Agonists Enhance Pyramidal Cell Firing in Prefrontal Cortex Through a Preferential<br>Action on GABA Interneurons. Cerebral Cortex, 2012, 22, 1487-1497.                                                                       | 1.6  | 139       |
| 15 | Dopamine Neurotransmission and Atypical Antipsychotics in Prefrontal Cortex: A Critical Review.<br>Current Topics in Medicinal Chemistry, 2012, 12, 2357-2374.                                                                                 | 1.0  | 26        |
| 16 | Selective siRNA-mediated suppression of 5-HT1A autoreceptors evokes strong anti-depressant-like effects. Molecular Psychiatry, 2012, 17, 612-623.                                                                                              | 4.1  | 111       |
| 17 | Noradrenergic antidepressants increase cortical dopamine: Potential use in augmentation strategies.<br>Neuropharmacology, 2012, 63, 675-684.                                                                                                   | 2.0  | 26        |
| 18 | New antidepressant strategy based on acute siRNA silencing of 5-HT1A autoreceptors. Molecular<br>Psychiatry, 2012, 17, 567-567.                                                                                                                | 4.1  | 11        |

NoemÃ-Santana

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Activation of Thalamocortical Networks by the N-methyl-D-aspartate Receptor Antagonist<br>Phencyclidine: Reversal by Clozapine. Biological Psychiatry, 2011, 69, 918-927.                                                                      | 0.7 | 72        |
| 20 | Serotonin Interaction with Other Transmitter Systems. Handbook of Behavioral Neuroscience, 2010, ,<br>259-276.                                                                                                                                 | 0.7 | 6         |
| 21 | Quantitative Analysis of the Expression of Dopamine D1 and D2 Receptors in Pyramidal and GABAergic<br>Neurons of the Rat Prefrontal Cortex. Cerebral Cortex, 2009, 19, 849-860.                                                                | 1.6 | 196       |
| 22 | NMDA antagonist and antipsychotic actions in cortico-subcortical circuits. Neurotoxicity Research, 2008, 14, 129-140.                                                                                                                          | 1.3 | 17        |
| 23 | P.1.b.004 Activation of thalamo-cortical circuits by phencyclidine, reversal by clozapine. European Neuropsychopharmacology, 2008, 18, S218-S219.                                                                                              | 0.3 | 0         |
| 24 | Localization of 5-HT receptors in the mammalian cortex. , 2008, , 135-153.                                                                                                                                                                     |     | 0         |
| 25 | Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor<br>blockade with phencyclidine. Proceedings of the National Academy of Sciences of the United States of<br>America, 2007, 104, 14843-14848. | 3.3 | 160       |
| 26 | In Vivo Excitation of GABA Interneurons in the Medial Prefrontal Cortex through 5-HT3 Receptors.<br>Cerebral Cortex, 2004, 14, 1365-1375.                                                                                                      | 1.6 | 132       |
| 27 | Expression of Serotonin1A and Serotonin2A Receptors in Pyramidal and GABAergic Neurons of the Rat<br>Prefrontal Cortex. Cerebral Cortex, 2004, 14, 1100-1109.                                                                                  | 1.6 | 402       |