
Jan Roelof van der Meer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7891956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiology Reviews, 2009, 33, 376-393.	3.9	817
2	Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME Journal, 2016, 10, 2557-2568.	4.4	570
3	Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Archives of Microbiology, 2001, 175, 198-207.	1.0	516
4	Where microbiology meets microengineering: design and applications of reporter bacteria. Nature Reviews Microbiology, 2010, 8, 511-522.	13.6	466
5	Enrichment, Phylogenetic Analysis and Detection of a Bacterium That Performs Enhanced Biological Phosphate Removal in Activated Sludge. Systematic and Applied Microbiology, 1999, 22, 454-465.	1.2	358
6	Bacterial Transcriptional Regulators for Degradation Pathways of Aromatic Compounds. Microbiology and Molecular Biology Reviews, 2004, 68, 474-500.	2.9	350
7	Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. Journal of Bacteriology, 1993, 175, 2578-2588.	1.0	305
8	Development of a Set of Simple Bacterial Biosensors for Quantitative and Rapid Measurements of Arsenite and Arsenate in Potable Water. Environmental Science & Technology, 2003, 37, 4743-4750.	4.6	301
9	Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. Journal of Bacteriology, 1996, 178, 4367-4374.	1.0	220
10	Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME Journal, 2010, 4, 752-763.	4.4	215
11	Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by Gram-positive bacteria. Molecular Microbiology, 1995, 17, 427-437.	1.2	194
12	Whole-cell living biosensors—are they ready for environmental application?. Applied Microbiology and Biotechnology, 2006, 70, 273-280.	1.7	192
13	Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Applied and Environmental Microbiology, 1997, 63, 4053-4060.	1.4	186
14	Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. Journal of Bacteriology, 1991, 173, 6-15.	1.0	183
15	Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. Journal of Bacteriology, 1991, 173, 2425-2434.	1.0	181
16	The hidden life of integrative and conjugative elements. FEMS Microbiology Reviews, 2017, 41, 512-537.	3.9	180
17	Cloning and Characterization of lin Genes Responsible for the Degradation of Hexachlorocyclohexane Isomers by Sphingomonas paucimobilis Strain B90. Applied and Environmental Microbiology, 2002, 68, 6021-6028.	1.4	173
18	The clc Element of Pseudomonas sp. Strain B13, a Genomic Island with Various Catabolic Properties. Journal of Bacteriology, 2006, 188, 1999-2013.	1.0	153

#	Article	IF	CITATIONS
19	Illuminating the detection chain of bacterial bioreporters. Environmental Microbiology, 2004, 6, 1005-1020.	1.8	149
20	Bacterial Bioassay for Rapid and Accurate Analysis of Arsenic in Highly Variable Groundwater Samples. Environmental Science & Technology, 2005, 39, 7625-7630.	4.6	149
21	Genomic islands and the evolution of catabolic pathways in bacteria. Current Opinion in Biotechnology, 2003, 14, 248-254.	3.3	147
22	Chromosomal Integration, Tandem Amplification, and Deamplification in <i>Pseudomonas putida</i> F1 of a 105-Kilobase Genetic Element Containing the Chlorocatechol Degradative Genes from <i>Pseudomonas</i> sp. Strain B13. Journal of Bacteriology, 1998, 180, 4360-4369.	1.0	139
23	Organization of lin Genes and IS 6100 among Different Strains of Hexachlorocyclohexane-Degrading Sphingomonas paucimobilis : Evidence for Horizontal Gene Transfer. Journal of Bacteriology, 2004, 186, 2225-2235.	1.0	138
24	Use of flow cytometric methods for single-cell analysis in environmental microbiology. Current Opinion in Microbiology, 2008, 11, 205-212.	2.3	136
25	Identification of a novel composite transposable element, Tn5280, carrying chlorobenzene dioxygenase genes of Pseudomonas sp. strain P51. Journal of Bacteriology, 1991, 173, 7077-7083.	1.0	130
26	Evolution of a Pathway for Chlorobenzene Metabolism Leads to Natural Attenuation in Contaminated Groundwater. Applied and Environmental Microbiology, 1998, 64, 4185-4193.	1.4	130
27	Analytics with engineered bacterial bioreporter strains and systems. Current Opinion in Biotechnology, 2006, 17, 1-3.	3.3	128
28	Community-wide plasmid gene mobilization and selection. ISME Journal, 2013, 7, 1173-1186.	4.4	124
29	The Broad Substrate Chlorobenzene Dioxygenase and cis-Chlorobenzene Dihydrodiol Dehydrogenase of Pseudomonas sp. Strain P51 Are Linked Evolutionarily to the Enzymes for Benzene and Toluene Degradation. Journal of Biological Chemistry, 1996, 271, 4009-4016.	1.6	122
30	Community Analysis of Ammonia and Nitrite Oxidizers during Start-Up of Nitritation Reactors. Applied and Environmental Microbiology, 2003, 69, 3213-3222.	1.4	122
31	Immediate ecotoxicological effects of short-lived oil spills on marine biota. Nature Communications, 2016, 7, 11206.	5.8	120
32	Characterization of a Second tfd Gene Cluster for Chlorophenol and Chlorocatechol Metabolism on Plasmid pJP4 in Ralstonia eutropha JMP134(pJP4). Journal of Bacteriology, 2000, 182, 4165-4172.	1.0	116
33	Prospects for harnessing biocide resistance for bioremediation and detoxification. Science, 2018, 360, 743-746.	6.0	114
34	Int-B13, an Unusual Site-Specific Recombinase of the Bacteriophage P4 Integrase Family, Is Responsible for Chromosomal Insertion of the 105-Kilobase <i>clc</i> Element of <i>Pseudomonas</i> sp. Strain B13. Journal of Bacteriology, 1998, 180, 5505-5514.	1.0	109
35	Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. , 1997, 71, 159-178.		100
36	The urgent need for microbiology literacy in society. Environmental Microbiology, 2019, 21, 1513-1528.	1.8	99

#	Article	IF	CITATIONS
37	The <i>tfdK</i> Gene Product Facilitates Uptake of 2,4-Dichlorophenoxyacetate by <i>Ralstonia eutropha</i> JMP134(pJP4). Journal of Bacteriology, 1998, 180, 2237-2243.	1.0	98
38	Characterization of the Pseudomonas sp. strain P51 gene tcbR, a LysR-type transcriptional activator of the tcbCDEF chlorocatechol oxidative operon, and analysis of the regulatory region. Journal of Bacteriology, 1991, 173, 3700-3708.	1.0	94
39	Enantioselective Transformation of α-Hexachlorocyclohexane by the Dehydrochlorinases LinA1 and LinA2 from the Soil Bacterium Sphingomonas paucimobilis B90A. Applied and Environmental Microbiology, 2005, 71, 8514-8518.	1.4	93
40	Bacterial Biosensors for Measuring Availability of Environmental Pollutants. Sensors, 2008, 8, 4062-4080.	2.1	91
41	The tfdR gene product can successfully take over the role of the insertion element-inactivated TfdT protein as a transcriptional activator of the tfdCDEF gene cluster, which encodes chlorocatechol degradation in Ralstonia eutropha JMP134(pJP4). Journal of Bacteriology, 1996, 178, 6824-6832.	1.0	88
42	Low-Frequency Horizontal Transfer of an Element Containing the Chlorocatechol Degradation Genes from Pseudomonas sp. Strain B13 to Pseudomonas putida F1 and to Indigenous Bacteria in Laboratory-Scale Activated-Sludge Microcosms. Applied and Environmental Microbiology, 1998, 64, 2126-2132.	1.4	88
43	Measurement of Biologically Available Naphthalene in Gas and Aqueous Phases by Use of a Pseudomonas putida Biosensor. Applied and Environmental Microbiology, 2004, 70, 43-51.	1.4	80
44	First Day of an Oil Spill on the Open Sea: Early Mass Transfers of Hydrocarbons to Air and Water. Environmental Science & Technology, 2014, 48, 9400-9411.	4.6	78
45	Bacterial community structure of a pesticide-contaminated site and assessment of changes induced in community structure during bioremediation. FEMS Microbiology Ecology, 2006, 57, 116-127.	1.3	76
46	Development of a microfluidics biosensor for agarose-bead immobilized Escherichia coli bioreporter cells for arsenite detection in aqueous samples. Lab on A Chip, 2011, 11, 2369.	3.1	75
47	Impact of Mycelia on the Accessibility of Fluorene to PAH-Degrading Bacteria. Environmental Science & Technology, 2013, 47, 6908-6915.	4.6	73
48	Development of bacteria-based bioassays for arsenic detection in natural waters. Analytical and Bioanalytical Chemistry, 2009, 394, 687-693.	1.9	72
49	Generalist hydrocarbonâ€degrading bacterial communities in the oilâ€polluted water column of the <scp>N</scp> orth <scp>S</scp> ea. Microbial Biotechnology, 2015, 8, 434-447.	2.0	72
50	Dynamics of multigene expression during catabolic adaptation of Ralstonia eutropha JMP134 (pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Molecular Microbiology, 1999, 33, 396-406.	1.2	71
51	Enhanced biodegradation of hexachlorocyclohexane (HCH) in contaminated soils via inoculation with Sphingobium indicum B90A. Biodegradation, 2008, 19, 27-40.	1.5	71
52	Field Testing of Arsenic in Groundwater Samples of Bangladesh Using a Test Kit Based on Lyophilized Bioreporter Bacteria. Environmental Science & Technology, 2012, 46, 3281-3287.	4.6	70
53	HbpR, a New Member of the XylR/DmpR Subclass within the NtrC Family of Bacterial Transcriptional Activators, Regulates Expression of 2-Hydroxybiphenyl Metabolism in Pseudomonas azelaica HBP1. Journal of Bacteriology, 2000, 182, 405-417.	1.0	69
54	Development of a Multistrain Bacterial Bioreporter Platform for the Monitoring of Hydrocarbon Contaminants in Marine Environments. Environmental Science & Technology, 2010, 44, 1049-1055.	4.6	69

#	Article	IF	CITATIONS
55	Electrochemical As(III) whole-cell based biochip sensor. Biosensors and Bioelectronics, 2013, 47, 237-242.	5.3	69
56	Stochasticity and bistability in horizontal transfer control of a genomic island in <i>Pseudomonas</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20792-20797.	3.3	68
57	Population dynamics of an introduced bacterium degrading chlorinated benzenes in a soil column and in sewage sludge. Biodegradation, 1999, 10, 113-125.	1.5	65
58	Unusual Integrase Gene Expression on the clc Genomic Island in Pseudomonas sp. Strain B13. Journal of Bacteriology, 2003, 185, 4530-4538.	1.0	65
59	Miniaturized and integrated whole cell living bacterial sensors in field applicable autonomous devices. Current Opinion in Biotechnology, 2017, 45, 24-33.	3.3	64
60	Evolution of a chlorobenzene degradative pathway among bacteria in a contaminated groundwater mediated by a genomic island in Ralstonia. Environmental Microbiology, 2003, 5, 163-173.	1.8	63
61	Local Environmental Factors Drive Divergent Grassland Soil Bacterial Communities in the Western Swiss Alps. Applied and Environmental Microbiology, 2016, 82, 6303-6316.	1.4	63
62	Host and invader impact of transfer of the clc genomic island into Pseudomonas aeruginosa PAO1. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7058-7063.	3.3	62
63	Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models. Npj Systems Biology and Applications, 2020, 6, 1.	1.4	62
64	Bioreporters and biosensors for arsenic detection. Biotechnological solutions for a world-wide pollution problem. Current Opinion in Biotechnology, 2013, 24, 534-541.	3.3	61
65	Cloning and characterization of the genes encoding nitrilotriacetate monooxygenase of Chelatobacter heintzii ATCC 29600. Journal of Bacteriology, 1996, 178, 6123-6132.	1.0	59
66	Inhibition of denitrification activity but not of mRNA induction in Paracoccus denitrificans by nitrite at a suboptimal pH. Antonie Van Leeuwenhoek, 1997, 72, 183-189.	0.7	57
67	Environmental pollution promotes selection of microbial degradation pathways. Frontiers in Ecology and the Environment, 2006, 4, 35-42.	1.9	56
68	Intracellular excision and reintegration dynamics of the ICE <i>clc</i> genomic island of <i>Pseudomonas knackmussii</i> sp. strain B13. Molecular Microbiology, 2009, 72, 1293-1306.	1.2	56
69	A new green fluorescent protein-based bacterial biosensor for analysing phenanthrene fluxes. Environmental Microbiology, 2006, 8, 697-708.	1.8	55
70	Genetic Analysis of Phenoxyalkanoic Acid Degradation in Sphingomonas herbicidovorans MH. Applied and Environmental Microbiology, 2004, 70, 6066-6075.	1.4	54
71	Purification and Characterization of Two Enantioselective α-Ketoglutarate-Dependent Dioxygenases, RdpA and SdpA, from Sphingomonas herbicidovorans MH. Applied and Environmental Microbiology, 2006, 72, 4853-4861.	1.4	52
72	Comparative genome analysis of <scp><i>P</i></scp> <i>seudomonas knackmussii</i> â€ <scp>B</scp> 13, the first bacterium known to degrade chloroaromatic compounds. Environmental Microbiology, 2015, 17, 91-104.	1.8	52

Jan Roelof van der Meer

#	Article	IF	CITATIONS
73	The clc element of Pseudomonas sp. strain B13 and other mobile degradative elements employing phage-like integrases. Archives of Microbiology, 2001, 175, 79-85.	1.0	51
74	Compact portable biosensor for arsenic detection in aqueous samples with <i>Escherichia coli</i> bioreporter cells. Review of Scientific Instruments, 2014, 85, 015120.	0.6	51
75	Characterization of two alternative promoters for integrase expression in the clc genomic island of Pseudomonas sp. strain B13. Molecular Microbiology, 2003, 49, 93-104.	1.2	50
76	Analysis of Bioavailable Arsenic in Rice with Whole Cell Living Bioreporter Bacteria. Journal of Agricultural and Food Chemistry, 2007, 55, 2115-2120.	2.4	50
77	Molecular Diversity of Plasmids Bearing Genes That Encode Toluene and Xylene Metabolism in Pseudomonas Strains Isolated from Different Contaminated Sites in Belarus. Applied and Environmental Microbiology, 2000, 66, 2842-2852.	1.4	49
78	Ultrasensitive Reporter Protein Detection in Genetically Engineered Bacteria. Analytical Chemistry, 2005, 77, 2683-2689.	3.2	47
79	Cellular Variability of RpoS Expression Underlies Subpopulation Activation of an Integrative and Conjugative Element. PLoS Genetics, 2012, 8, e1002818.	1.5	46
80	Measuring mass transfer processes of octane with the help of an alkSalkB::gfp-tagged Escherichia coli. Environmental Microbiology, 2001, 3, 512-524.	1.8	45
81	Bioreporters: gfp versus lux revisited and single-cell response. Biosensors and Bioelectronics, 2007, 22, 1578-1585.	5.3	45
82	Internal arsenite bioassay calibration using multiple bioreporter cell lines. Microbial Biotechnology, 2008, 1, 149-157.	2.0	45
83	Genomic changes underlying host specialization in the bee gut symbiont <i>Lactobacillus</i> Firm5. Molecular Ecology, 2019, 28, 2224-2237.	2.0	45
84	Relationship between sediment organic matter, bacteria composition, and the ecosystem metabolism of alpine streams. Limnology and Oceanography, 2004, 49, 2001-2010.	1.6	41
85	A dual functional origin of transfer in the ICEclc genomic island of Pseudomonas knackmussii B13. Molecular Microbiology, 2011, 79, 743-758.	1.2	41
86	Regulatable and Modulable Background Expression Control in Prokaryotic Synthetic Circuits by Auxiliary Repressor Binding Sites. ACS Synthetic Biology, 2016, 5, 36-45.	1.9	41
87	Information from single-cell bacterial biosensors: what is it good for?. Current Opinion in Biotechnology, 2006, 17, 4-10.	3.3	40
88	Cell Differentiation to "Mating Bodies―Induced by an Integrating and Conjugative Element in Free-Living Bacteria. Current Biology, 2013, 23, 255-259.	1.8	40
89	Genome-wide analysis of <i>Sphingomonas wittichii</i> RW1 behaviour during inoculation and growth in contaminated sand. ISME Journal, 2015, 9, 150-165.	4.4	40
90	Highly variable individual donor cell fates characterize robust horizontal gene transfer of an integrative and conjugative element. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3375-E3383.	3.3	40

#	Article	IF	CITATIONS
91	Development of stable denitrifying cultures during repeated aerobic-anaerobic transient periods. Water Research, 1997, 31, 1947-1954.	5.3	39
92	Dynamics of Multiple lin Gene Expression in Sphingomonas paucimobilis B90A in Response to Different Hexachlorocyclohexane Isomers. Applied and Environmental Microbiology, 2004, 70, 6650-6656.	1.4	39
93	Burkholderia sartisoli sp. nov., isolated from a polycyclic aromatic hydrocarbon-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 420-423.	0.8	39
94	Doubleâ€ŧagged fluorescent bacterial bioreporter for the study of polycyclic aromatic hydrocarbon diffusion and bioavailability. Environmental Microbiology, 2009, 11, 2271-2283.	1.8	39
95	Transcriptional profiling of <scp>G</scp> ramâ€positive <scp><i>A</i></scp> <i>rthrobacter</i> in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds. Environmental Microbiology, 2014, 16, 2212-2225.	1.8	39
96	Adaptation to Chronic Nutritional Stress Leads to Reduced Dependence on Microbiota in <i>Drosophila melanogaster</i> . MBio, 2017, 8, .	1.8	39
97	Transcriptional Organization and Dynamic Expression of the hbpCAD Genes, Which Encode the First Three Enzymes for 2-Hydroxybiphenyl Degradation in Pseudomonas azelaica HBP1. Journal of Bacteriology, 2001, 183, 270-279.	1.0	37
98	Mutant HbpR transcription activator isolation for 2â€chlorobiphenyl via green fluorescent proteinâ€based flow cytometry and cell sorting. Microbial Biotechnology, 2008, 1, 68-78.	2.0	37
99	Transcriptome and membrane fatty acid analyses reveal different strategies for responding to permeating and non-permeating solutes in the bacterium Sphingomonas wittichii. BMC Microbiology, 2011, 11, 250.	1.3	36
100	Genomeâ€wide transposon insertion scanning of environmental survival functions in the polycyclic aromatic hydrocarbon degrading bacterium <i><scp>S</scp>phingomonas wittichii</i> â€ <scp>RW</scp> 1. Environmental Microbiology, 2013, 15, 2681-2695.	1.8	36
101	Molecular-based methods can contribute to assessments of toxicological risks and bioremediation strategies. Journal of Microbiological Methods, 1998, 32, 107-119.	0.7	35
102	Genetic characterization of insertion sequence ISJP4 on plasmid pJP4 from Ralstonia eutropha JMP134. Gene, 1997, 202, 103-114.	1.0	33
103	Biotransformation of Various Substituted Aromatic Compounds to Chiral Dihydrodihydroxy Derivatives. Applied and Environmental Microbiology, 2001, 67, 3333-3339.	1.4	33
104	Sequencing and characterizing the genome of Estrella lausannensis as an undergraduate project: training students and biological insights. Frontiers in Microbiology, 2015, 6, 101.	1.5	32
105	Quantitative chemical biosensing by bacterial chemotaxis in microfluidic chips. Environmental Microbiology, 2018, 20, 241-258.	1.8	31
106	Archaeorhizomycetes Spatial Distribution in Soils Along Wide Elevational and Environmental Gradients Reveal Co-abundance Patterns With Other Fungal Saprobes and Potential Weathering Capacities. Frontiers in Microbiology, 2019, 10, 656.	1.5	30
107	Effect of two types of biosurfactants on phenanthrene availability to the bacterial bioreporter Burkholderia sartisoli strain RP037. Applied Microbiology and Biotechnology, 2010, 85, 1131-1139.	1.7	29
108	Genome-Wide Analysis of Salicylate and Dibenzofuran Metabolism in Sphingomonas Wittichii RW1. Frontiers in Microbiology, 2012, 3, 300.	1.5	29

#	Article	IF	CITATIONS
109	Host diet mediates a negative relationship between abundance and diversity of <i>Drosophila</i> gut microbiota. Ecology and Evolution, 2018, 8, 9491-9502.	0.8	29
110	Bridging the Holistic-Reductionist Divide in Microbial Ecology. MSystems, 2019, 4, .	1.7	29
111	Effect of integration of a GFP reporter gene on fitness of Ralstonia eutropha during growth with 2,4-dichlorophenoxyacetic acid. Environmental Microbiology, 2003, 5, 878-887.	1.8	28
112	Quantification of bacterial mRNA involved in degradation of 1,2,4-trichlorobenzene byPseudomonassp. strain P51 from liquid culture and from river sediment by reverse transcriptase PCR (RT/PCR). FEMS Microbiology Letters, 1998, 167, 123-129.	0.7	27
113	Comparison of naphthalene bioavailability determined by whole-cell biosensing and availability determined by extraction with Tenax. Environmental Pollution, 2008, 156, 803-808.	3.7	27
114	An Operon of Three Transcriptional Regulators Controls Horizontal Gene Transfer of the Integrative and Conjugative Element ICEclc in Pseudomonas knackmussii B13. PLoS Genetics, 2014, 10, e1004441.	1.5	27
115	Miniaturized electrochemical biosensor based on wholeâ€cell for heavy metal ions detection in water. Biotechnology and Bioengineering, 2021, 118, 1456-1465.	1.7	27
116	Predicting spatial patterns of soil bacteria under current and future environmental conditions. ISME Journal, 2021, 15, 2547-2560.	4.4	27
117	Unlike PAHs from Exxon Valdez Crude Oil, PAHs from Gulf of Alaska Coals are not Readily Bioavailable. Environmental Science & Technology, 2009, 43, 5864-5870.	4.6	26
118	Transcriptome analysis of the mobile genome ICEclc in Pseudomonas knackmussii B13. BMC Microbiology, 2010, 10, 153.	1.3	26
119	Exposure to Solute Stress Affects Genome-Wide Expression but Not the Polycyclic Aromatic Hydrocarbon-Degrading Activity of Sphingomonas sp. Strain LH128 in Biofilms. Applied and Environmental Microbiology, 2012, 78, 8311-8320.	1.4	26
120	Development of bioreporter assays for the detection of bioavailability of longâ€chain alkanes based on the marine bacterium <i>Alcanivorax borkumensis</i> strain SK2. Environmental Microbiology, 2011, 13, 2808-2819.	1.8	25
121	Tunable reporter signal production in feedbackâ€uncoupled arsenic bioreporters. Microbial Biotechnology, 2013, 6, 503-514.	2.0	25
122	Escherichia coli ribose binding protein based bioreporters revisited. Scientific Reports, 2014, 4, 5626.	1.6	25
123	Versatility of soil column experiments to study biodegradation of halogenated compounds under environmental conditions. Biodegradation, 1992, 3, 265-284.	1.5	24
124	Biochip with E. coli bacteria for detection of arsenic in drinking water. Procedia Chemistry, 2009, 1, 1003-1006.	0.7	24
125	The Genome of the Toluene-Degrading Pseudomonas veronii Strain 1YdBTEX2 and Its Differential Gene Expression in Contaminated Sand. PLoS ONE, 2016, 11, e0165850.	1.1	24
126	Rapid detection of microbiota cell type diversity using machine-learned classification of flow cytometry data. Communications Biology, 2020, 3, 379.	2.0	24

#	Article	IF	CITATIONS
127	Analysis of the binding site of the LysR-type transcriptional activator TcbR on the tcbR and tcbC divergent promoter sequences. Journal of Bacteriology, 1994, 176, 1850-1856.	1.0	23
128	Effect of Groundwater Composition on Arsenic Detection by Bacterial Biosensors. Mikrochimica Acta, 2005, 151, 217-222.	2.5	23
129	Identification and Physical Characterization of the HbpR Binding Sites of the hbpC and hbpD Promoters. Journal of Bacteriology, 2002, 184, 2914-2924.	1.0	22
130	A New Large-DNA-Fragment Delivery System Based on Integrase Activity from an Integrative and Conjugative Element. Applied and Environmental Microbiology, 2013, 79, 4440-4447.	1.4	21
131	Physiological and transcriptome changes induced by Pseudomonas putida acquisition of an integrative and conjugative element. Scientific Reports, 2018, 8, 5550.	1.6	21
132	Bioluminescence-Triggered Photoswitchable Bacterial Adhesions Enable Higher Sensitivity and Dual-Readout Bacterial Biosensors for Mercury. ACS Sensors, 2020, 5, 2205-2210.	4.0	21
133	Toxicity of triclosan, penconazole and metalaxyl on <i>Caulobacter crescentus</i> and a freshwater microbial community as assessed by flow cytometry. Environmental Microbiology, 2009, 11, 1682-1691.	1.8	20
134	<i>cis</i> -Chlorobenzene Dihydrodiol Dehydrogenase (TcbB) from <i>Pseudomonas</i> sp. Strain P51, Expressed in <i>Escherichia coli</i> DH5α(pTCB149), Catalyzes Enantioselective Dehydrogenase Reactions. Applied and Environmental Microbiology, 1999, 65, 5242-5246.	1.4	20
135	Seasonal Fluctuations of Bacterial Community Diversity in Agricultural Soil and Experimental Validation by Laboratory Disturbance Experiments. Microbial Ecology, 2008, 56, 210-222.	1.4	19
136	Artificial Neural Network Study of Whole-Cell Bacterial Bioreporter Response Determined Using Fluorescence Flow Cytometry. Analytical Chemistry, 2007, 79, 9107-9114.	3.2	18
137	Optimization of preservation conditions of As (III) bioreporter bacteria. Applied Microbiology and Biotechnology, 2009, 82, 785-792.	1.7	18
138	A Flow Cytometry Based Oligotrophic Pollutant Exposure Test To Detect Bacterial Growth Inhibition and Cell Injury. Environmental Science & amp; Technology, 2011, 45, 5820-5827.	4.6	18
139	Mechanistic Modeling of Genetic Circuits for ArsR Arsenic Regulation. ACS Synthetic Biology, 2017, 6, 862-874.	1.9	18
140	Genomic Islands Confer Heavy Metal Resistance in Mucilaginibacter kameinonensis and Mucilaginibacter rubeus Isolated from a Gold/Copper Mine. Genes, 2018, 9, 573.	1.0	18
141	Design of new promoters and of a dual-bioreporter based on cross-activation by the two regulatory proteins XylR and HbpR. Environmental Microbiology, 2004, 6, 1186-1196.	1.8	17
142	Mutation analysis of the different tfd genes for degradation of chloroaromatic compounds in Ralstonia eutropha JMP134. Archives of Microbiology, 2004, 181, 112-121.	1.0	17
143	Novel Use of a Whole Cell <i>E. coli</i> Bioreporter as a Urinary Exposure Biomarker. Environmental Science & Technology, 2009, 43, 423-428.	4.6	17
144	Biosensors in Monitoring Water Quality and Safety: An Example of a Miniaturizable Whole-Cell Based Sensor for Hg2+ Optical Detection in Water. Water (Switzerland), 2019, 11, 1986.	1.2	17

#	Article	IF	CITATIONS
145	Transient Replication in Specialized Cells Favors Transfer of an Integrative and Conjugative Element. MBio, 2019, 10, .	1.8	17
146	Bioremediation, a broad perspective. Microbial Biotechnology, 2009, 2, 125-127.	2.0	16
147	Comparison of differential gene expression to water stress among bacteria with relevant pollutantâ€degradation properties. Environmental Microbiology Reports, 2016, 8, 91-102.	1.0	16
148	Meta-scale mountain grassland observatories uncover commonalities as well as specific interactions among plant and non-rhizosphere soil bacterial communities. Scientific Reports, 2018, 8, 5758.	1.6	15
149	Unusual location of two nearby pairs of upstream activating sequences for HbpR, the main regulatory protein for the 2-hydroxybiphenyl degradation pathway of †Pseudomonas azelaica' HBP1. Microbiology (United Kingdom), 2001, 147, 2183-2194.	0.7	15
150	Improved Statistical Analysis of Low Abundance Phenomena in Bimodal Bacterial Populations. PLoS ONE, 2013, 8, e78288.	1.1	15
151	The TetR-Type MfsR Protein of the Integrative and Conjugative Element (ICE) ICE clc Controls both a Putative Efflux System and Initiation of ICE Transfer. Journal of Bacteriology, 2014, 196, 3971-3979.	1.0	14
152	Environmental connectivity controls diversity in soil microbial communities. Communications Biology, 2021, 4, 492.	2.0	14
153	An automated microreactor for semi-continuous biosensor measurements. Lab on A Chip, 2016, 16, 1383-1392.	3.1	13
154	Response Characteristics of Arsenic-Sensitive Bioreporters Expressing the gfp Reporter Gene. Mikrochimica Acta, 2005, 151, 209-216.	2.5	12
155	Miniaturized bacterial biosensor system for arsenic detection holds great promise for making integrated measurement device. Bioengineered Bugs, 2011, 2, 296-298.	2.0	12
156	Complete alanine scanning of the Escherichia coli RbsB ribose binding protein reveals residues important for chemoreceptor signaling and periplasmic abundance. Scientific Reports, 2017, 7, 8245.	1.6	12
157	TfdD II , one of the two chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4), cannot efficiently convert 2-chloro- cis , cis -muconate to trans -dienelactone to allow growth on 3-chlorobenzoate. Archives of Microbiology, 2002, 178, 13-25.	1.0	11
158	Characterization of a MexAB-OprM efflux system necessary for productive metabolism of Pseudomonas azelaica HBP1 on 2-hydroxybiphenyl. Frontiers in Microbiology, 2013, 4, 203.	1.5	11
159	<scp><i>S</i></scp> <i>phingomonas wittichii</i> â€ <scp>RW</scp> 1 gene reporters interrogating the dibenzofuran metabolic network highlight conditions for early successful development in contaminated microcosms. Environmental Microbiology Reports, 2015, 7, 480-488.	1.0	11
160	Greater topoclimatic control of above―versus belowâ€ground communities. Global Change Biology, 2020, 26, 6715-6728.	4.2	11
161	Genetic adaptation of bacteria to chlorinated aromatic compounds. FEMS Microbiology Reviews, 1994, 15, 239-249.	3.9	11
162	Bacterial Sensors: Synthetic Design and Application Principles. Synthesis Lectures on Synthetic Biology, 2010, 2, 1-167.	0.0	10

#	Article	IF	CITATIONS
163	Identification of <i>opsA</i> , a Gene Involved in Solute Stress Mitigation and Survival in Soil, in the Polycyclic Aromatic Hydrocarbon-Degrading Bacterium Novosphingobium sp. Strain LH128. Applied and Environmental Microbiology, 2014, 80, 3350-3361.	1.4	10
164	Reproducible Propagation of Species-Rich Soil Bacterial Communities Suggests Robust Underlying Deterministic Principles of Community Formation. MSystems, 2022, 7, e0016022.	1.7	10
165	Reversible and Irreversible Pollutant-Induced Bacterial Cellular Stress Effects Measured by Ethidium Bromide Uptake and Efflux. Environmental Science & Technology, 2012, 46, 1201-1208.	4.6	9
166	Examining Chemical Compound Biodegradation at Low Concentrations through Bacterial Cell Proliferation. Environmental Science & amp; Technology, 2013, 47, 1913-1921.	4.6	9
167	Life History Analysis of Integrative and Conjugative Element Activation in Growing Microcolonies of Pseudomonas. Journal of Bacteriology, 2014, 196, 1425-1434.	1.0	9
168	Draft Genome Sequence of Microbacterium foliorum Strain 122 Isolated from a Plant Growing in a Chronically Hydrocarbon-Contaminated Site. Genome Announcements, 2017, 5, .	0.8	9
169	An analog to digital converter controls bistable transfer competence development of a widespread bacterial integrative and conjugative element. ELife, 2020, 9, .	2.8	9
170	Draft Genome Sequence of Plantibacter flavus Strain 251 Isolated from a Plant Growing in a Chronically Hydrocarbon-Contaminated Site. Genome Announcements, 2017, 5, .	0.8	8
171	Genome-wide gene expression changes of Pseudomonas veronii 1YdBTEX2 during bioaugmentation in polluted soils. Environmental Microbiomes, 2021, 16, 8.	2.2	7
172	Characterization of HbpR binding by site-directed mutagenesis of its DNA-binding site and by deletion of the effector domain. FEBS Journal, 2005, 272, 1756-1766.	2.2	6
173	Towards improved biomonitoring tools for an intensified sustainable multiâ€use environment. Microbial Biotechnology, 2016, 9, 658-665.	2.0	6
174	Heterologous Expression of Pseudomonas putida Methyl-Accepting Chemotaxis Proteins Yields Escherichia coli Cells Chemotactic to Aromatic Compounds. Applied and Environmental Microbiology, 2018, 84, .	1.4	6
175	Probing chemotaxis activity in Escherichia coli using fluorescent protein fusions. Scientific Reports, 2019, 9, 3845.	1.6	6
176	Assessing Biodegradability of Chemical Compounds from Microbial Community Growth Using Flow Cytometry. MSystems, 2021, 6, .	1.7	6
177	Evolution of Catabolic Pathways in Pseudomonas Through Gene Transfer. , 2006, , 189-236.		6
178	Recent advances in microbial community analysis from machine learning of multiparametric flow cytometry data. Current Opinion in Biotechnology, 2022, 75, 102688.	3.3	6
179	A bistable prokaryotic differentiation system underlying development of conjugative transfer competence. PLoS Genetics, 2022, 18, e1010286.	1.5	6
180	Response to Comment on "Unlike PAHs from <i>Exxon Valdez</i> Crude Oil, PAHs from Gulf of Alaska Coals are not Readily Bioavailable― Environmental Science & Technology, 2010, 44, 2212-2213.	4.6	5

Jan Roelof van der Meer

#	Article	IF	CITATIONS
181	How can a dual oriT system contribute to efficient transfer of an integrative and conjugative element?. Mobile Genetic Elements, 2011, 1, 82-84.	1.8	5
182	Computational redesign of the Escherichia coli ribose-binding protein ligand binding pocket for 1,3-cyclohexanediol and cyclohexanol. Scientific Reports, 2019, 9, 16940.	1.6	5
183	Insights into Mobile Genetic Elements of the Biocide-Degrading Bacterium Pseudomonas nitroreducens HBP-1. Genes, 2020, 11, 930.	1.0	5
184	Characterisation of the Putative Effector Interaction Site of the Regulatory HbpR Protein from Pseudomonas azelaica by Site-Directed Mutagenesis. PLoS ONE, 2011, 6, e16539.	1.1	5
185	Colonization of aerobic biofilms by sulfateâ€reducing bacteria. Biofouling, 2001, 17, 275-288.	0.8	4
186	Development of a Set of Simple Bacterial Biosensors for Quantitative and Rapid Measurements of Arsenite and Arsenate in Potable Water. Environmental Science & Technology, 2004, 38, 2959-2959.	4.6	4
187	Identification of genes potentially involved in solute stress response in Sphingomonas wittichii RW1 by transposon mutant recovery. Frontiers in Microbiology, 2014, 5, 585.	1.5	4
188	Bacterial bioreporter detection of arsenic associated with iron oxides. Environmental Sciences: Processes and Impacts, 2018, 20, 913-922.	1.7	4
189	Assessing Antibiotics Biodegradation and Effects at Sub-inhibitory Concentrations by Quantitative Microbial Community Deconvolution. Frontiers in Environmental Science, 2021, 9, .	1.5	4
190	Characterization of a Ribosomal RNA Gene Cluster from Clostridium tyrobutyricum: Phylogenetic Positioning Based on the 16S and 23S Nucleotide Sequences. Systematic and Applied Microbiology, 1993, 16, 201-207.	1.2	3
191	Genomic islands and evolution of catabolic pathways. , 0, , 255-274.		3
192	Engineering of Sensory Proteins with New Ligand-Binding Capacities. , 2019, , 1-21.		3
193	Let the sun shine. Current Opinion in Biotechnology, 2010, 21, 235-237.	3.3	2
194	Measurements of Hydrocarbon Pollutants in Aqueous Samples Using Bacterial Bioreporter Assays. Springer Protocols, 2015, , 247-257.	0.1	2
195	Ribose-Binding Protein Mutants With Improved Interaction Towards the Non-natural Ligand 1,3-Cyclohexanediol. Frontiers in Bioengineering and Biotechnology, 2021, 9, 705534.	2.0	2
196	Subcellular Localization Defects Characterize Ribose-Binding Mutant Proteins with New Ligand Properties in Escherichia coli. Applied and Environmental Microbiology, 2022, 88, AEM0211721.	1.4	2
197	Genetic, Genomic, and System Analyses for Pure Cultures and Communities: Protocol – Ultra-High-Throughput Transposon Scanning of Bacterial Genomes. Springer Protocols, 2014, , 51-70.	0.1	1
198	A Miniaturized Microbe-Silicon-Chip Based on Bioluminescent Engineered Escherichia coli for the Evaluation of Water Quality and Safety. International Journal of Environmental Research and Public Health, 2021, 18, 7580.	1.2	1

#	Article	IF	CITATIONS
199	Using Bacteria to Quantify Arsenic Contamination in Potable Water. Chimia, 2006, 60, 631-631.	0.3	0
200	Editorial overview: Environmental biotechnology. Current Opinion in Biotechnology, 2017, 45, ix-xi.	3.3	0
201	Engineering of Sensory Proteins with New Ligand-Binding Capacities. , 2022, , 223-242.		Ο
202	Transcriptomic analysis of phenanthrene degrading Sphingomonas biofilms exposed to environmentally relevant solute and matric stresses. Communications in Agricultural and Applied Biological Sciences, 2011, 76, 69-72.	0.0	0