Pablo E Schilman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7891886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pushâ€pull to manage leafâ€cutting ants: an effective strategy in forestry plantations. Pest Management Science, 2021, 77, 432-439.	1.7	8
2	Viscosity as a key factor in decision making of nectar feeding ants. Journal of Insect Physiology, 2021, 128, 104164.	0.9	7
3	Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (Triatominae). PLoS Neglected Tropical Diseases, 2021, 15, e0008822.	1.3	4
4	Aerobic Metabolism Alterations as an Evidence of Underlying Deltamethrin Resistance Mechanisms in <i>Triatoma infestans</i> (Hemiptera: Reduviidae). Journal of Medical Entomology, 2020, 57, 1988-1991.	0.9	2
5	Impact of alkaloids in food consumption, metabolism and survival in a blood-sucking insect. Scientific Reports, 2020, 10, 9443.	1.6	20
6	The Phosphatase CSW Controls Life Span by Insulin Signaling and Metabolism Throughout Adult Life in Drosophila. Frontiers in Genetics, 2020, 11, 364.	1.1	8
7	Linking thermo-tolerances of the highly invasive ant, Wasmannia auropunctata, to its current and potential distribution. Biological Invasions, 2019, 21, 3491-3504.	1.2	17
8	Thermal Tolerance Plasticity in Chagas Disease Vectors Rhodnius prolixus (Hemiptera: Reduviidae) and Triatoma infestans. Journal of Medical Entomology, 2019, 56, 997-1003.	0.9	7
9	The costs of living in a thermal fluctuating environment for the tropical haematophagous bug, Rhodnius prolixus. Journal of Thermal Biology, 2018, 74, 92-99.	1.1	11
10	Ecological and physiological thermal niches to understand distribution of <scp>C</scp> hagas disease vectors inÂ <scp>L</scp> atin <scp>A</scp> merica. Medical and Veterinary Entomology, 2018, 32, 1-13.	0.7	16
11	Genetic variation for tolerance to high temperatures in a population of <i>Drosophila melanogaster</i> . Ecology and Evolution, 2018, 8, 10374-10383.	0.8	35
12	Enhanced fertility and chill tolerance after cold-induced reproductive arrest in females of temperate species of the <i>Drosophila buzzatii</i> complex. Journal of Experimental Biology, 2017, 220, 713-721.	0.8	8
13	Aggregated oviposition in Rhodnius prolixus , sensory cues and physiological consequences. Journal of Insect Physiology, 2017, 98, 74-82.	0.9	12
14	Using eco-physiological traits to understand the realized niche: the role of desiccation tolerance in Chagas disease vectors. Oecologia, 2017, 185, 607-618.	0.9	20
15	Metabolism and gas exchange patterns in Rhodnius prolixus. Journal of Insect Physiology, 2017, 97, 38-44.	0.9	7
16	The Importance Of Physiology On Insect Geographical Distribution: The Role Of Desiccation Resistance For The Geographical Distribution Of Chagas Disease Vectors. , 2017, , .		0
17	Geographical distribution, climatic variability and thermoâ€ŧolerance of Chagas disease vectors. Ecography, 2015, 38, 851-860.	2.1	25
18	Metabolism and water loss rate of the haematophagous insect, <i>Rhodnius prolixus</i> : effect of starvation and temperature. Journal of Experimental Biology, 2014, 217, 4414-22.	0.8	27

PABLO E SCHILMAN

#	Article	IF	CITATIONS
19	Linking Global Warming, Metabolic Rate of Hematophagous Vectors, and the Transmission of Infectious Diseases. Frontiers in Physiology, 2012, 3, 75.	1.3	11
20	Effects of temperature on responses to anoxia and oxygen reperfusion in <i>Drosophila melanogaster</i> . Journal of Experimental Biology, 2011, 214, 1271-1275.	0.8	22
21	Trail-Laying Behaviour as a Function of Resource Quality in the Ant <i>Camponotus rufipes</i> . Psyche: Journal of Entomology, 2011, 2011, 1-5.	0.4	6
22	The adaptive value of hatching towards the end of the night: lessons from eggs of the haematophagous bug <i>Rhodnius prolixus</i> . Physiological Entomology, 2009, 34, 231-237.	0.6	7
23	Haemolymph sugar levels in a nectar-feeding ant: dependence on metabolic expenditure and carbohydrate deprivation. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2008, 178, 157-165.	0.7	18
24	Breathe softly, beetle: Continuous gas exchange, water loss and the role of the subelytral space in the tenebrionid beetle, Eleodes obscura. Journal of Insect Physiology, 2008, 54, 192-203.	0.9	19
25	The Insulin-Regulated CREB Coactivator TORC Promotes Stress Resistance in Drosophila. Cell Metabolism, 2008, 7, 434-444.	7.2	87
26	Effects of oxygen reperfusion and metabolic flux rate modulation on responses to anoxia in <i>Drosophila melanogaster</i> . FASEB Journal, 2008, 22, 185-185.	0.2	0
27	Water balance in the Argentine ant (Linepithema humile) compared with five common native ant species from southern California. Physiological Entomology, 2007, 32, 1-7.	0.6	43
28	Oxygen Reperfusion Damage in an Insect. PLoS ONE, 2007, 2, e1267.	1.1	63
29	Foraging energetics of a nectar-feeding ant: metabolic expenditure as a function of food-source profitability. Journal of Experimental Biology, 2006, 209, 4091-4101.	0.8	18
30	Respiratory and cuticular water loss in insects with continuous gas exchange: Comparison across five ant species. Journal of Insect Physiology, 2005, 51, 1295-1305.	0.9	57
31	Energetics of locomotion and load carriage in the nectar feeding ant, <i>Camponotus rufipes</i> . Physiological Entomology, 2005, 30, 332-337.	0.6	15
32	The hyperoxic switch: assessing respiratory water loss rates in tracheate arthropods with continuous gas exchange. Journal of Experimental Biology, 2004, 207, 4463-4471.	0.8	54
33	Daily Rhythms in Disease-Vector Insects. Biological Rhythm Research, 2004, 35, 79-92.	0.4	60
34	Temperature preference in Rhodnius prolixus, effects and possible consequences. Acta Tropica, 2004, 90, 115-122.	0.9	44
35	Assessment of nectar flow rate and memory for patch quality in the ant Camponotus rufipes. Animal Behaviour, 2003, 66, 687-693.	0.8	33
36	Dynamics of Thermopreference in the Chagas Disease Vector <1>Panstrongylus megistus 1 (Hemiptera: Reduviidae). Journal of Medical Entomology, 2002, 39, 716-719.	0.9	21

#	Article	IF	CITATIONS
37	Comparison of disturbance stridulations in five species of triatominae bugs. Acta Tropica, 2001, 79, 171-178.	0.9	30
38	Two different vibratory signals in Rhodniusprolixus (Hemiptera: Reduviidae). Acta Tropica, 2000, 77, 271-278.	0.9	22
39	Attributes of oviposition substrates affect fecundity in Rhodnius prolixus. Journal of Insect Physiology, 1996, 42, 837-841.	0.9	20