Young H Choi

List of Publications by Citations

Source: https://exaly.com/author-pdf/7891411/young-h-choi-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

14,632 63 278 112 h-index g-index citations papers 16,884 6.73 298 4.3 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
278	Natural deep eutectic solvents as new potential media for green technology. <i>Analytica Chimica Acta</i> , 2013 , 766, 61-8	6.6	1227
277	NMR-based metabolomic analysis of plants. <i>Nature Protocols</i> , 2010 , 5, 536-49	18.8	631
276	Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology?. <i>Plant Physiology</i> , 2011 , 156, 1701-5	6.6	594
275	Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. <i>Food Chemistry</i> , 2015 , 187, 14-9	8.5	518
274	Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. <i>Analytical Chemistry</i> , 2013 , 85, 6272-8	7.8	380
273	Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 10150-5	11.5	323
272	NMR-based plant metabolomics: where do we stand, where do we go?. <i>Trends in Biotechnology</i> , 2011 , 29, 267-75	15.1	294
271	Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents. <i>Journal of Natural Products</i> , 2013 , 76, 2162-73	4.9	285
270	Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. <i>Plant Physiology</i> , 2004 , 135, 2398-410	6.6	218
269	Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. <i>Plant Physiology</i> , 2009 , 150, 1567-75	6.6	204
268	Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. <i>Journal of Chromatography A</i> , 2016 , 1434, 50-6	4.5	199
267	Ethnopharmacology and systems biology: a perfect holistic match. <i>Journal of Ethnopharmacology</i> , 2005 , 100, 53-6	5	198
266	Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). <i>Food Chemistry</i> , 2014 , 159, 116-21	8.5	196
265	An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. <i>Plant Physiology</i> , 2009 , 151, 2006-17	6.6	196
264	Metabolic constituents of grapevine and grape-derived products. <i>Phytochemistry Reviews</i> , 2010 , 9, 357	-3 7 . 8	194
263	NMR-based metabolomics at work in phytochemistry. <i>Phytochemistry Reviews</i> , 2007 , 6, 3-14	7.7	193
262	Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. <i>Phytochemistry</i> , 2010 , 71, 2058-73	4	186

(2006-2009)

261	Health-Affecting Compounds in Brassicaceae. <i>Comprehensive Reviews in Food Science and Food Safety</i> , 2009 , 8, 31-43	16.4	185
260	Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. <i>Comptes Rendus Chimie</i> , 2018 , 21, 628-638	2.7	169
259	Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H NMR and multivariate analysis technique. <i>Phytochemistry</i> , 2004 , 65, 857-64	4	163
258	Metabolomic differentiation of Cannabis sativa cultivars using 1H NMR spectroscopy and principal component analysis. <i>Journal of Natural Products</i> , 2004 , 67, 953-7	4.9	147
257	Quality control of herbal material and phytopharmaceuticals with MS and NMR based metabolic fingerprinting. <i>Planta Medica</i> , 2009 , 75, 763-75	3.1	145
256	NMR metabolomics to revisit the tobacco mosaic virus infection in Nicotiana tabacum leaves. <i>Journal of Natural Products</i> , 2006 , 69, 742-8	4.9	142
255	NMR metabolomics of thrips (Frankliniella occidentalis) resistance in Senecio hybrids. <i>Journal of Chemical Ecology</i> , 2009 , 35, 219-29	2.7	131
254	Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. <i>Journal of Experimental Botany</i> , 2008 , 59, 3371-81	7	128
253	Plant metabolomics: from holistic data to relevant biomarkers. <i>Current Medicinal Chemistry</i> , 2013 , 20, 1056-90	4.3	128
252	Metabolomics: back to basics. <i>Phytochemistry Reviews</i> , 2008 , 7, 525-537	7.7	124
251	Metabolic classification of South American Ilex species by NMR-based metabolomics. <i>Phytochemistry</i> , 2010 , 71, 773-84	4	119
250	Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. <i>BMC Plant Biology</i> , 2011 , 11, 149	5.3	113
249	Identification of phenylpropanoids in methyl jasmonate treated Brassica rapa leaves using two-dimensional nuclear magnetic resonance spectroscopy. <i>Journal of Chromatography A</i> , 2006 , 1112, 148-55	4.5	108
248	Metabolic fingerprinting of Ephedra species using 1H-NMR spectroscopy and principal component analysis. <i>Chemical and Pharmaceutical Bulletin</i> , 2005 , 53, 105-9	1.9	104
247	Plant Metabolomics: From Holistic Data to Relevant Biomarkers. <i>Current Medicinal Chemistry</i> , 2013 , 20, 1056-1090	4.3	104
246	Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. <i>Phytochemistry Reviews</i> , 2016 , 15, 221-250	7.7	102
245	Extraction for metabolomics: access to the metabolome. <i>Phytochemical Analysis</i> , 2014 , 25, 291-306	3.4	101
244	Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy. <i>Phytochemistry</i> , 2006 , 67, 2503-11	4	100

243	Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. <i>Current Opinion in Food Science</i> , 2019 , 26, 87-93	9.8	98
242	Metabolomics for bioactivity assessment of natural products. <i>Phytotherapy Research</i> , 2011 , 25, 157-69	6.7	97
241	Metabolic response of tomato leaves upon different plant-pathogen interactions. <i>Phytochemical Analysis</i> , 2010 , 21, 89-94	3.4	96
240	Classification of Ilex species based on metabolomic fingerprinting using nuclear magnetic resonance and multivariate data analysis. <i>Journal of Agricultural and Food Chemistry</i> , 2005 , 53, 1237-45	5.7	93
239	Healthy and unhealthy plants: The effect of stress on the metabolism of Brassicaceae. <i>Environmental and Experimental Botany</i> , 2009 , 67, 23-33	5.9	88
238	Collection and trade of wild-harvested orchids in Nepal. <i>Journal of Ethnobiology and Ethnomedicine</i> , 2013 , 9, 64	3.9	87
237	Dose-independent pharmacokinetics of metformin in rats: Hepatic and gastrointestinal first-pass effects. <i>Journal of Pharmaceutical Sciences</i> , 2006 , 95, 2543-52	3.9	86
236	Metabolomic analysis of host plant resistance to thrips in wild and cultivated tomatoes. <i>Phytochemical Analysis</i> , 2010 , 21, 110-7	3.4	83
235	NMR assignments of the major cannabinoids and cannabiflavonoids isolated from flowers of Cannabis sativa. <i>Phytochemical Analysis</i> , 2004 , 15, 345-54	3.4	82
234	Metabolomic differentiation of Brassica rapa following herbivory by different insect instars using two-dimensional nuclear magnetic resonance spectroscopy. <i>Journal of Chemical Ecology</i> , 2006 , 32, 2417	7- 2 :8	79
233	Monitoring biochemical changes during grape berry development in Portuguese cultivars by NMR spectroscopy. <i>Food Chemistry</i> , 2011 , 124, 1760-1769	8.5	77
232	NMR metabolic fingerprinting based identification of grapevine metabolites associated with downy mildew resistance. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 9599-606	5.7	76
231	Metabolic characterization of Brassica rapa leaves by NMR spectroscopy. <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 7936-43	5.7	76
230	Metabolomic analysis of Strychnos nux-vomica, Strychnos icaja and Strychnos ignatii extracts by 1H nuclear magnetic resonance spectrometry and multivariate analysis techniques. <i>Phytochemistry</i> , 2004 , 65, 1993-2001	4	75
229	Metabolic characterization of Palatinate German white wines according to sensory attributes, varieties, and vintages using NMR spectroscopy and multivariate data analyses. <i>Journal of Biomolecular NMR</i> , 2011 , 49, 255-66	3	74
228	Comprehensive extraction method integrated with NMR metabolomics: a new bioactivity screening method for plants, adenosine A1 receptor binding compounds in Orthosiphon stamineus Benth. <i>Analytical Chemistry</i> , 2011 , 83, 6902-6	7.8	74
227	Application of natural deep eutectic solvents for the green extraction of vanillin from vanilla pods. Flavour and Fragrance Journal, 2018, 33, 91-96	2.5	73
226	Metabolic differentiations and classification of Verbascum species by NMR-based metabolomics. <i>Phytochemistry</i> , 2011 , 72, 2045-51	4	73

225	An overview of NMR-based metabolomics to identify secondary plant compounds involved in host plant resistance. <i>Phytochemistry Reviews</i> , 2011 , 10, 205-216	7.7	73	
224	Fungal infection-induced metabolites in Brassica rapa. <i>Plant Science</i> , 2009 , 176, 608-615	5.3	72	
223	Recent methodology in the phytochemical analysis of ginseng. <i>Phytochemical Analysis</i> , 2008 , 19, 2-16	3.4	72	
222	Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. <i>PLoS ONE</i> , 2012 , 7, e43038	3.7	71	
221	Application of two-dimensional nuclear magnetic resonance spectroscopy to quality control of ginseng commercial products. <i>Planta Medica</i> , 2006 , 72, 364-9	3.1	71	
220	Metabolic profiling of the Mexican anxiolytic and sedative plant Galphimia glauca using nuclear magnetic resonance spectroscopy and multivariate data analysis. <i>Planta Medica</i> , 2008 , 74, 1295-301	3.1	70	
219	Metabolomic response of Brassica rapa submitted to pre-harvest bacterial contamination. <i>Food Chemistry</i> , 2008 , 107, 362-368	8.5	70	
218	Quantitative analysis of cannabinoids from Cannabis sativa using 1H-NMR. <i>Chemical and Pharmaceutical Bulletin</i> , 2004 , 52, 718-21	1.9	69	
217	Metal ion-inducing metabolite accumulation in Brassica rapa. <i>Journal of Plant Physiology</i> , 2008 , 165, 143	29 . 87	68	
216	Metabolic differentiation of Arabidopsis treated with methyl jasmonate using nuclear magnetic resonance spectroscopy. <i>Plant Science</i> , 2006 , 170, 1118-1124	5.3	68	
215	The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. <i>Natural Product Reports</i> , 2019 , 36, 35-107	15.1	63	
214	Glucosinolates and other metabolites in the leaves of Arabidopsis thaliana from natural populations and their effects on a generalist and a specialist herbivore. <i>Chemoecology</i> , 2008 , 18, 65-71	2	63	
213	Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage. <i>BMC Plant Biology</i> , 2010 , 10, 82	5.3	62	
212	Arctigenin protects cultured cortical neurons from glutamate-induced neurodegeneration by binding to kainate receptor. <i>Journal of Neuroscience Research</i> , 2002 , 68, 233-40	4.4	60	
211	1H-NMR-based metabolomics approach to understanding the drying effects on the phytochemicals in Cosmos caudatus. <i>Food Research International</i> , 2012 , 49, 763-770	7	59	
210	Identification of natural epimeric flavanone glycosides by NMR spectroscopy. <i>Food Chemistry</i> , 2009 , 116, 575-579	8.5	59	
209	Metabolomics in the natural products fielda gateway to novel antibiotics. <i>Drug Discovery Today: Technologies</i> , 2015 , 13, 11-7	7.1	58	
208	Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation. <i>Scientific Reports</i> , 2015 , 5, 10868	4.9	56	

207	Eliciting antibiotics active against the ESKAPE pathogens in a collection of actinomycetes isolated from mountain soils. <i>Microbiology (United Kingdom)</i> , 2014 , 160, 1714-1725	2.9	56
206	The perspectives of natural deep eutectic solvents in agri-food sector. <i>Critical Reviews in Food Science and Nutrition</i> , 2020 , 60, 2564-2592	11.5	54
205	Adenosine A1 receptor binding activity of methoxy flavonoids from Orthosiphon stamineus. <i>Planta Medica</i> , 2009 , 75, 132-6	3.1	52
204	Metabolomics: a tool for anticancer lead-finding from natural products. <i>Planta Medica</i> , 2010 , 76, 1094-7	10,21	50
203	Biosynthesis of salicylic acid in fungus elicited Catharanthus roseus cells. <i>Phytochemistry</i> , 2009 , 70, 532	-94	49
202	Comparing metabolomes: the chemical consequences of hybridization in plants. <i>New Phytologist</i> , 2005 , 167, 613-22	9.8	49
201	Metabolomic investigation of the ethnopharmacological use of Artemisia afra with NMR spectroscopy and multivariate data analysis. <i>Journal of Ethnopharmacology</i> , 2010 , 128, 230-5	5	48
200	Isolation of the acetylcholinesterase inhibitor ungeremine from Nerine bowdenii by preparative HPLC coupled on-line to a flow assay system. <i>Biological and Pharmaceutical Bulletin</i> , 2004 , 27, 1804-9	2.3	48
199	Quantitative analysis of bilobalide and ginkgolides from Ginkgo biloba leaves and Ginkgo products using (1)H-NMR. <i>Chemical and Pharmaceutical Bulletin</i> , 2003 , 51, 158-61	1.9	47
198	Broad range chemical profiling of natural deep eutectic solvent extracts using a high performance thin layer chromatography-based method. <i>Journal of Chromatography A</i> , 2018 , 1532, 198-207	4.5	46
197	Metabolic fingerprinting of Tomato Mosaic Virus infected Solanum lycopersicum. <i>Journal of Plant Physiology</i> , 2012 , 169, 1586-96	3.6	45
196	Metabolomic alterations in elicitor treated Silybum marianum suspension cultures monitored by nuclear magnetic resonance spectroscopy. <i>Journal of Biotechnology</i> , 2007 , 130, 133-42	3.7	45
195	Metabolomics-Driven Discovery of a Prenylated Isatin Antibiotic Produced by Streptomyces Species MBT28. <i>Journal of Natural Products</i> , 2015 , 78, 2355-63	4.9	44
194	Alkaloid accumulation in Catharanthus roseus cell suspension cultures fed with stemmadenine. <i>Biotechnology Letters</i> , 2004 , 26, 793-8	3	44
193	Natural product proteomining, a quantitative proteomics platform, allows rapid discovery of biosynthetic gene clusters for different classes of natural products. <i>Chemistry and Biology</i> , 2014 , 21, 707-18		43
192	Elicitation studies in cell suspension cultures of Cannabis sativa L. <i>Journal of Biotechnology</i> , 2009 , 143, 157-68	3.7	43
191	Application of two-dimensional J-resolved nuclear magnetic resonance spectroscopy to differentiation of beer. <i>Analytica Chimica Acta</i> , 2006 , 559, 264-270	6.6	43
190	Effects of enzyme inducers and inhibitors on the pharmacokinetics of metformin in rats: involvement of CYP2C11, 2D1 and 3A1/2 for the metabolism of metformin. <i>British Journal of Pharmacology</i> , 2006 , 149, 424-30	8.6	42

189	Looking to nature for a new concept in antimicrobial treatments: isoflavonoids from Cytisus striatus as antibiotic adjuvants against MRSA. <i>Scientific Reports</i> , 2017 , 7, 3777	4.9	41	
188	Metabolic changes in different developmental stages of Vanilla planifolia pods. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 7651-8	5.7	40	
187	Analysis of metabolic variation and galanthamine content in Narcissus bulbs by 1H NMR. <i>Phytochemical Analysis</i> , 2010 , 21, 66-72	3.4	40	
186	Liquid chromatography-diode array detection-electrospray ionisation mass spectrometry/nuclear magnetic resonance analyses of the anti-hyperglycemic flavonoid extract of Genista tenera. Structure elucidation of a flavonoid-C-glycoside. <i>Journal of Chromatography A</i> , 2005 , 1089, 59-64	4.5	40	
185	Alterations in grapevine leaf metabolism upon inoculation with Plasmopara viticola in different time-points. <i>Plant Science</i> , 2012 , 191-192, 100-7	5.3	39	
184	Quantitative analysis of strychnine and Brucine in Strychnos nux-vomica using 1H-NMR. <i>Planta Medica</i> , 2003 , 69, 1169-71	3.1	39	
183	Seasonal accumulation of major alkaloids in organs of pharmaceutical crop Narcissus Carlton. <i>Phytochemistry</i> , 2013 , 88, 43-53	4	37	
182	Supercritical fluid extraction and liquid chromatographic-electrospray mass spectrometric analysis of stevioside fromStevia rebaudiana leaves. <i>Chromatographia</i> , 2002 , 55, 617-620	2.1	36	
181	Analysis of strychnine from detoxified Strychnos nux-vomica [corrected] seeds using liquid chromatography-electrospray mass spectrometry. <i>Journal of Ethnopharmacology</i> , 2004 , 93, 109-12	5	35	
180	Metabolomics for the rapid dereplication of bioactive compounds from natural sources. <i>Phytochemistry Reviews</i> , 2013 , 12, 293-304	7.7	34	
179	Pharmacokinetic interaction between itraconazole and metformin in rats: competitive inhibition of metabolism of each drug by each other via hepatic and intestinal CYP3A1/2. <i>British Journal of Pharmacology</i> , 2010 , 161, 815-29	8.6	34	
178	Quantitative analysis of ginkgolic acids from Ginkgo leaves and products using 1H-NMR. <i>Phytochemical Analysis</i> , 2004 , 15, 325-30	3.4	34	
177	Traditional processing strongly affects metabolite composition by hydrolysis in Rehmannia glutinosa roots. <i>Chemical and Pharmaceutical Bulletin</i> , 2011 , 59, 546-52	1.9	33	
176	Natural Deep Eutectic Solvent Extraction of Flavonoids of as a Replacement for Conventional Organic Solvents. <i>Molecules</i> , 2020 , 25,	4.8	32	
175	Perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv. Trincadeira. <i>Plant Physiology and Biochemistry</i> , 2014 , 74, 141-55	5.4	32	
174	Probiotic supplementation influences faecal short chain fatty acids in infants at high risk for eczema. <i>Beneficial Microbes</i> , 2015 , 6, 783-90	4.9	32	
173	Quantitative analysis of ephedrine analogues from ephedra species using 1H-NMR. <i>Chemical and Pharmaceutical Bulletin</i> , 2003 , 51, 1382-5	1.9	32	
172	Strategies for supercritical fluid extraction of hyoscyamine and scopolamine salts using basified modifiers. <i>Journal of Chromatography A</i> , 1999 , 863, 47-55	4.5	32	

171	Discovery of C-Glycosylpyranonaphthoquinones in Streptomyces sp. MBT76 by a Combined NMR-Based Metabolomics and Bioinformatics Workflow. <i>Journal of Natural Products</i> , 2017 , 80, 269-277	4.9	31
170	Plant bioassay to assess the effects of allelochemicals on the metabolome of the target species Aegilops geniculata by an NMR-based approach. <i>Phytochemistry</i> , 2013 , 93, 27-40	4	31
169	Olivetol as product of a polyketide synthase in Cannabis sativa L. <i>Plant Science</i> , 2004 , 166, 381-385	5.3	31
168	Antibiotic production in is organized by a division of labor through terminal genomic differentiation. <i>Science Advances</i> , 2020 , 6, eaay5781	14.3	29
167	Metabolic changes of salicylic acid-elicited Catharanthus roseus cell suspension cultures monitored by NMR-based metabolomics. <i>Biotechnology Letters</i> , 2009 , 31, 1967-74	3	29
166	Comparative quantitative analysis of artemisinin by chromatography and qNMR. <i>Phytochemical Analysis</i> , 2010 , 21, 451-6	3.4	28
165	Natural Deep Eutectic Solvents as Multifunctional Media for the Valorization of Agricultural Wastes. <i>ChemSusChem</i> , 2019 , 12, 1310-1315	8.3	27
164	Metabolomic tool to identify antioxidant compounds of Fraxinus angustifolia leaf and stem bark extracts. <i>Industrial Crops and Products</i> , 2016 , 88, 65-77	5.9	27
163	Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using (1) H-NMR spectroscopy. <i>Phytochemical Analysis</i> , 2014 , 25, 122-6	3.4	27
162	Lugdunomycin, an Angucycline-Derived Molecule with Unprecedented Chemical Architecture. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2809-2814	16.4	27
161	Metabolic profiling as a tool for prioritizing antimicrobial compounds. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2016 , 43, 299-312	4.2	26
160	Effect of benzothiadiazole on the metabolome of Arabidopsis thaliana. <i>Plant Physiology and Biochemistry</i> , 2009 , 47, 146-52	5.4	26
159	Comparison of extraction methods for secologanin and the quantitative analysis of secologanin from Symphoricarpos albus using 1H-NMR. <i>Phytochemical Analysis</i> , 2004 , 15, 257-61	3.4	26
158	Towards eco-friendly crop protection: natural deep eutectic solvents and defensive secondary metabolites. <i>Phytochemistry Reviews</i> , 2017 , 16, 935-951	7.7	25
157	Glucosinolate profiling of Brassica rapa cultivars after infection by Leptosphaeria maculans and Fusarium oxysporum. <i>Biochemical Systematics and Ecology</i> , 2010 , 38, 612-620	1.4	25
156	Analysis of metabolites in the terpenoid pathway of Catharanthus roseus cell suspensions. <i>Plant Cell, Tissue and Organ Culture</i> , 2014 , 117, 225-239	2.7	24
155	Chemical interactions between plants in Mediterranean vegetation: the influence of selected plant extracts on Aegilops geniculata metabolome. <i>Phytochemistry</i> , 2014 , 106, 69-85	4	24
154	Effect of fertilizers on galanthamine and metabolite profiles in Narcissus bulbs by 1H NMR. <i>Journal of Agricultural and Food Chemistry</i> , 2011 , 59, 3155-61	5.7	24

(2013-2009)

153	Metabolic changes in Agrobacterium tumefaciens-infected Brassica rapa. <i>Journal of Plant Physiology</i> , 2009 , 166, 1005-14	3.6	24
152	NMR metabolomic analysis of fecal water from subjects on a vegetarian diet. <i>Biological and Pharmaceutical Bulletin</i> , 2008 , 31, 1192-8	2.3	24
151	Supercritical fluid extraction and liquid chromatography-electrospray mass analysis of vinblastine from Catharanthus roseus. <i>Chemical and Pharmaceutical Bulletin</i> , 2002 , 50, 1294-6	1.9	24
150	Metabolomics-guided analysis of isocoumarin production by species MBT76 and biotransformation of flavonoids and phenylpropanoids. <i>Metabolomics</i> , 2016 , 12, 90	4.7	24
149	Induction, characterization, and NMR-based metabolic profiling of adventitious root cultures from leaf explants of Gynura procumbens. <i>Plant Cell, Tissue and Organ Culture</i> , 2012 , 109, 465-475	2.7	23
148	Comprehensive review on herbal medicine for energy intake suppression. <i>Obesity Reviews</i> , 2011 , 12, 499-514	10.6	23
147	Biological variation of Vanilla planifolia leaf metabolome. <i>Phytochemistry</i> , 2010 , 71, 567-73	4	23
146	Activity of quinones from teak (Tectona grandis) on fungal cell wall stress. <i>Planta Medica</i> , 2006 , 72, 943	-4 .1	23
145	Incorporation of an invasive plant into a native insect herbivore food web. <i>PeerJ</i> , 2016 , 4, e1954	3.1	23
144	Pre-analytical method for NMR-based grape metabolic fingerprinting and chemometrics. <i>Analytica Chimica Acta</i> , 2011 , 703, 179-86	6.6	22
143	High performance liquid chromatography-electrospray lonization MS-MS analysis ofForsythia koreana fruits, leaves, and stems. Enhancement of the efficiency of extraction of arctigenin by use of supercritical-fluid extraction. <i>Chromatographia</i> , 2003 , 57, 73-79	2.1	22
142	Differential tissue distribution of metabolites in Jacobaea vulgaris, Jacobaea aquatica and their crosses. <i>Phytochemistry</i> , 2012 , 78, 89-97	4	21
141	Transgressive segregation of primary and secondary metabolites in F(2) hybrids between Jacobaea aquatica and J. vulgaris. <i>Metabolomics</i> , 2012 , 8, 211-219	4.7	21
140	Changes in metformin pharmacokinetics after intravenous and oral administration to rats with short-term and long-term diabetes induced by streptozotocin. <i>Journal of Pharmaceutical Sciences</i> , 2008 , 97, 5363-75	3.9	21
139	Plant anticancer agents, XLVI. Cytotoxic casbane-type constituents of Agrostistachys hookeri. Journal of Natural Products, 1988 , 51, 110-6	4.9	21
138	A simple and rapid HPLC-DAD method for simultaneously monitoring the accumulation of alkaloids and precursors in different parts and different developmental stages of Catharanthus roseus plants. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences,	3.2	20
137	A comparison on the metabolic profiling of the Mexican anxiolytic and sedative plant Galphimia glauca four years later. <i>Journal of Ethnopharmacology</i> , 2012 , 141, 964-74	5	20
136	An investigation of the antidepressant action of xiaoyaosan in rats using ultra performance liquid chromatography-mass spectrometry combined with metabonomics. <i>Phytotherapy Research</i> , 2013 , 27, 1074-85	6.7	20

135	Antistaphylococcal Prenylated Acylphoroglucinol and Xanthones from Kielmeyera variabilis. Journal of Natural Products, 2016 , 79, 470-6	4.9	19
134	Identification of novel endophenaside antibiotics produced by Kitasatospora sp. MBT66. <i>Journal of Antibiotics</i> , 2015 , 68, 445-52	3.7	19
133	Pharmacokinetic and pharmacodynamic interaction between nifedipine and metformin in rats: competitive inhibition for metabolism of nifedipine and metformin by each other via CYP isozymes. <i>Xenobiotica</i> , 2012 , 42, 483-95	2	19
132	Metabolic characterization of Withania somnifera from different regions of India using NMR spectroscopy. <i>Planta Medica</i> , 2011 , 77, 1958-64	3.1	19
131	Metabolic fingerprinting by 1HNMR for discrimination of the two species used as Radix Bupleuri. <i>Planta Medica</i> , 2012 , 78, 926-33	3.1	19
130	NMR metabolomics for identification of adenosine A1 receptor binding compounds from Boesenbergia rotunda rhizomes extract. <i>Journal of Ethnopharmacology</i> , 2013 , 150, 95-9	5	18
129	Effect of acute stresses on zebra fish (Danio rerio) metabolome measured by NMR-based metabolomics. <i>Planta Medica</i> , 2014 , 80, 1227-33	3.1	18
128	Steroidal glycosides of the 14,15-seco-18-nor-pregnane series from Cynanchum ascyrifolium. <i>Phytochemistry</i> , 1998 , 49, 1129-33	4	18
127	Extending pharmacological dose-response curves for salsalate with natural deep eutectic solvents. <i>RSC Advances</i> , 2015 , 5, 61398-61401	3.7	17
126	Identification of bioactive metabolites against adenosine A1 receptor using NMR-based metabolomics. <i>Metabolomics</i> , 2013 , 9, 778-785	4.7	17
125	Effects of cytochrome P450 inducers and inhibitors on the pharmacokinetics of intravenous furosemide in rats: involvement of CYP2C11, 2E1, 3A1 and 3A2 in furosemide metabolism. <i>Journal of Pharmacy and Pharmacology</i> , 2010 , 61, 47-54	4.8	17
124	Optimum SFE condition for lignans of Schisandra chinensis fruits. <i>Chromatographia</i> , 1998 , 48, 695-699	2.1	17
123	Organogenic nodule development in hop (Humulus lupulus L.): transcript and metabolic responses. <i>BMC Genomics</i> , 2008 , 9, 445	4.5	17
122	Leucanicidin and Endophenasides Result from Methyl-Rhamnosylation by the Same Tailoring Enzymes in Kitasatospora sp. MBT66. <i>ACS Chemical Biology</i> , 2016 , 11, 478-90	4.9	16
121	NMR spectroscopy and chemometrics as a tool for anti-TNF\(\text{\textbf{b}}\)ctivity screening in crude extracts of grapes and other berries. <i>Metabolomics</i> , 2012 , 8, 1148-1161	4.7	16
120	Isolation of a potent anti-MRSA sesquiterpenoid quinone from Ulmus davidiana var. japonica. <i>Chemical and Pharmaceutical Bulletin</i> , 2000 , 48, 1805-6	1.9	16
119	H-NMR analysis of feces: new possibilities in the helminthes infections research. <i>BMC Infectious Diseases</i> , 2017 , 17, 275	4	15
118	Above-ground plant metabolomic responses to plantBoil feedbacks and herbivory. <i>Journal of Ecology</i> , 2020 , 108, 1703-1712	6	15

Metabolic alteration of cell suspension cultures overexpressing in the plastids or cytosol. <i>Plant Cell, Tissue and Organ Culture</i> , 2018 , 134, 41-53	2.7	15	
Culturing Synechocystis sp. Strain PCC 6803 with N2 and CO2 in a Diel Regime Reveals Multiphase Glycogen Dynamics with Low Maintenance Costs. <i>Applied and Environmental Microbiology</i> , 2016 , 82, 41	8 0 -818	9 ¹⁵	
Dose-dependent pharmacokinetics and first-pass effects of mirodenafil, a new erectogenic, in rats. <i>Biopharmaceutics and Drug Disposition</i> , 2009 , 30, 305-17	1.7	15	
Metabolic fingerprinting reveals differences between shoots of wild and cultivated carrot (Daucus carota L.) and suggests maternal inheritance or wild trait dominance in hybrids. <i>Phytochemistry</i> , 2011 , 72, 1341-7	4	15	
Metabolic analysis of elicited cell suspension cultures of Cannabis sativa L. by (1)H-NMR spectroscopy. <i>Biotechnology Letters</i> , 2010 , 32, 935-41	3	15	
Pre-analytical method for metabolic profiling of plant cell cultures of Passiflora garckei. Biotechnology Letters, 2008 , 30, 2031-6	3	15	
Extraction of epicuticular wax and nonacosan-10-OL fromEphedra herb utilizing supercritical carbon dioxide. <i>Korean Journal of Chemical Engineering</i> , 1996 , 13, 216-219	2.8	15	
Proximate mechanisms of drought resistance in Phytoseiulus persimilis eggs. <i>Experimental and Applied Acarology</i> , 2019 , 79, 279-298	2.1	15	
Metabolomic plasticity in GM and non-GM potato leaves in response to aphid herbivory and virus infection. <i>Journal of Agricultural and Food Chemistry</i> , 2012 , 60, 1488-93	5.7	14	
Supercritical carbon dioxide extraction of podophyllotoxin from Dysosma pleiantha roots. <i>Planta Medica</i> , 1998 , 64, 482-3	3.1	14	
Aromatic Polyketide GTRI-02 is a Previously Unidentified Product of the act Gene Cluster in Streptomyces coelicolor A3(2). <i>ChemBioChem</i> , 2017 , 18, 1428-1434	3.8	13	
Plant Latex, from Ecological Interests to Bioactive Chemical Resources. <i>Planta Medica</i> , 2019 , 85, 856-86	583.1	13	
Fungal endophytes of Vanilla planifolia across Rünion Island: isolation, distribution and biotransformation. <i>BMC Plant Biology</i> , 2015 , 15, 142	5.3	13	
NMR-based metabolomics: a probe to utilize biodiversity. <i>Methods in Molecular Biology</i> , 2013 , 1055, 11	7-27	13	
Metabolic alterations and distribution of five-carbon precursors in jasmonic acid-elicited Catharanthus roseus cell suspension cultures. <i>Plant Cell, Tissue and Organ Culture</i> , 2015 , 122, 351-362	2.7	13	
Phenolic constituents of Gnaphalium uliginosum L <i>Phytochemistry Letters</i> , 2010 , 3, 45-47	1.9	13	
Comparison of supercritical carbon dioxide extraction with solvent extraction of nonacosan-10-ol, Emyrin acetate, squalene and stigmasterol from medicinal plants. <i>Phytochemical Analysis</i> , 1997 , 8, 233	-2 ³ 3 ⁴	13	
NMR assignment of iso-alpha-acids from isomerised extracts of Humulus lupulus L. cones. <i>Phytochemical Analysis</i> , 2007 , 18, 371-7	3.4	13	
	Culturing Synechocystis sp. Strain PCC 6803 with N2 and CO2 in a Diel Regime Reveals Multiphase Glycogen Dynamics with Low Maintenance Costs. Applied and Environmental Microbiology, 2016, 82, 41: Dose-dependent pharmacokinetics and first-pass effects of mirodenafil, a new erectogenic, in rats. Biopharmaceutics and Drug Disposition, 2009, 30, 305-17 Metabolic fingerprinting reveals differences between shoots of wild and cultivated carrot (Daucus carota L.) and suggests maternal inheritance or wild trait dominance in hybrids. Phytochemistry, 2011, 72, 1341-7 Metabolic analysis of elicited cell suspension cultures of Cannabis sativa L. by (1)H-NMR spectroscopy. Biotechnology Letters, 2010, 32, 935-41 Pre-analytical method for metabolic profiling of plant cell cultures of Passiflora garckel. Biotechnology Letters, 2008, 30, 2031-6 Extraction of epicuticular wax and nonacosan-10-OL fromEphedra herb utilizing supercritical carbon dioxide. Korean Journal of Chemical Engineering, 1996, 13, 216-219 Proximate mechanisms of drought resistance in Phytoseiulus persimilis eggs. Experimental and Applied Acarology, 2019, 79, 279-298 Metabolomic plasticity in GM and non-GM potato leaves in response to aphid herbivory and virus infection. Journal of Agricultural and Food Chemistry, 2012, 60, 1488-93 Supercritical carbon dioxide extraction of podophyllotoxin from Dysosma plelantha roots. Planta Medica, 1998, 64, 482-3 Aromatic Polyketide GTRI-02 is a Previously Unidentified Product of the act Gene Cluster in Streptomyces coelicolor A3(2). ChemBioChem, 2017, 18, 1428-1434 Plant Latex, from Ecological Interests to Bioactive Chemical Resources. Planta Medica, 2019, 85, 856-86 Fungal endophytes of Vanilla planifolia across Rlinion Island: isolation, distribution and biotransformation. BMC Plant Biology, 2015, 15, 142 NMR-based metabolomics: a probe to utilize biodiversity. Methods in Molecular Biology, 2013, 1055, 11 Metabolic alterations and distribution of five-carbon precursors in Jasmonic acid-elicited Catharanthus	Culturing Synechocystis sp. Strain PCC 6803 with N2 and CO2 in a Diel Regime Reveals Multiphase Glycogen Dynamics with Low Maintenance Costs. Applied and Environmental Microbiology, 2016, 82, 4186-818 Dose-dependent pharmacokinetics and first-pass effects of mirodenafil, a new erectogenic, in rats. Biopharmaceutics and Drug Disposition, 2009, 30, 305-17 Metabolic fingerprinting reveals differences between shoots of wild and cultivated carrot (Daucus carota L) and suggests maternal inheritance or wild trait dominance in hybrids. Phytochemistry, 2011, 72, 1341-7 Metabolic analysis of elicited cell suspension cultures of Cannabis sativa L. by (1)H-NMR spectroscopy. Biotechnology Letters, 2010, 32, 935-41 Pre-analytical method for metabolic profiling of plant cell cultures of Passiflora garckei. Biotechnology Letters, 2018, 30, 2031-6 Extraction of epicuticular wax and nonacosan-10-OL fromEphedra herb utilizing supercritical carbon dioxide. Korean Journal of Chemical Engineering, 1996, 13, 216-219 Proximate mechanisms of drought resistance in Phytoseiulus persimilis eggs. Experimental and Applied Acardogy, 2019, 79, 279-298 Metabolomic plasticity in GM and non-GM potato leaves in response to aphid herbivory and virus infection. Journal of Agricultural and Food Chemistry, 2012, 60, 1488-93 Supercritical carbon dioxide extraction of podophyllotoxin from Dysosma pleiantha Foots. Planta Medica, 1998, 64, 482-3 Aromatic Polyketide GTRI-O2 is a Previously Unidentified Product of the act Gene Cluster in Streptomyces coelicolor A3(2). ChemBioChem, 2017, 18, 1428-1434 Plant Latex, from Ecological Interests to Bioactive Chemical Resources. Planta Medica, 2019, 85, 856-8683,1 Fungal endophytes of Vanilla planifolia across Rünion Island: isolation, distribution and biotransformation. BMC Plant Biology, 2015, 15, 142 Metabolic alterations and distribution of five-carbon precursors in jasmonic acid-elicited Catharanthus roseus cell suspension cultures. Plant Cell, Tissue and Organ Culture, 2015, 122, 351-362 Phenoli	Culturing Synechocystis sp. Strain PCC 6803 with N2 and CO2 in a Diel Regime Reveals Multiphase Glycogen Dynamics with Low Maintenance Costs. Applied and Environmental Microbiology, 2016, 82, 4180-4189-35 Dose-dependent pharmacokinetics and first-pass effects of mirodenafil, a new erectogenic, in rats. 17 13 Metabolic fingerprinting reveals differences between shoots of wild and cultivated carrot (Daucus carota L.) and suggests maternal inheritance or wild trait dominance in hybrids. Phytochemistry, 4 15 2011, 72, 1341-7 Metabolic analysis of elicited cell suspension cultures of Cannabis sativa L. by (1)H-NMR spectroscopy. Biotechnology Letters, 2010, 32, 935-41 Pre-analytical method for metabolic profiling of plant cell cultures of Passiflora garckei. Biotechnology Letters, 2009, 30, 2031-6 Extraction of epicuticular wax and nonacosan-10-OL fromEphedra herb utilizing supercritical carbon dioxide. Korean Journal of Chemical Engineering, 1996, 13, 216-219 Proximate mechanisms of drought resistance in Phytoseiulus persimilis eggs. Experimental and Applied Acarology, 2019, 79, 279-298 Metabolomic plasticity in GM and non-GM potato leaves in response to aphid herbivory and virus infection. Journal of Agricultural and Food Chemistry, 2012, 60, 1488-93 Supercritical carbon dioxide extraction of podophyllotoxin from Dysosma pleiantha roots. Planta Medica, 1998, 64, 482-3 Aromatic Polyketide CTRI-02 is a Previously Unidentified Product of the act Gene Cluster in Streptomyces coelicolor A3(2). ChemBioChem, 2017, 18, 1428-1434 Plant Latex, from Ecological Interests to Bioactive Chemical Resources. Planta Medica, 2019, 85, 856-868). 1 13 Fungal endophytes of Vanilla planifolia across Runion Island: isolation, distribution and biotransformation. BMC Plant Biology, 2015, 15, 142 NMR-based metabolomics: a probe to utilize biodiversity. Methods in Molecular Biology, 2013, 1055, 117-22, 13 Metabolic alterations and distribution of five-carbon precursors in jasmonic acid-elicited Catharanthus roseus cell suspensi

99	Quantitative analysis of retinol and retinol palmitate in vitamin tablets using 1H-nuclear magnetic resonance spectroscopy. <i>Analytica Chimica Acta</i> , 2004 , 512, 141-147	6.6	13
98	Solubility and Stability of Some Pharmaceuticals in Natural Deep Eutectic Solvents-Based Formulations. <i>Molecules</i> , 2021 , 26,	4.8	13
97	Effect of functional groups on the solubilities of coumarin derivatives in supercritical carbon dioxide. <i>Chromatographia</i> , 1998 , 47, 93-97	2.1	12
96	Pharmacokinetics of intravenous methotrexate in mutant Nagase analbuminemic rats. Biopharmaceutics and Drug Disposition, 2007 , 28, 385-92	1.7	12
95	Metabolic comparison of cryopreserved and normal cells from Tabernaemontana divaricata suspension cultures. <i>Plant Cell, Tissue and Organ Culture</i> , 2005 , 83, 59-66	2.7	12
94	Natural Deep Eutectic Solvents as Performance Additives for Peroxygenase Catalysis. <i>ChemCatChem</i> , 2020 , 12, 989-994	5.2	12
93	Methyljasmonate Elicitation Increases Terpenoid Indole Alkaloid Accumulation in Hairy Root Cultures. <i>Plants</i> , 2019 , 8,	4.5	12
92	Investigation of chemomarkers of astragali radix of different ages and geographical origin by NMR profiling. <i>Molecules</i> , 2015 , 20, 3389-405	4.8	11
91	Effects of fungicides on galanthamine and metabolite profiles in Narcissus bulbs. <i>Plant Physiology and Biochemistry</i> , 2012 , 58, 116-23	5.4	11
90	Plant Metabolomics: From Holistic Data to Relevant Biomarkers. <i>Current Medicinal Chemistry</i> , 2013 , 20, 1056-1090	4.3	11
89	Effects of tesmilifene, a substrate of CYP3A and an inhibitor of P-glycoprotein, on the pharmacokinetics of intravenous and oral docetaxel in rats. <i>Journal of Pharmacy and Pharmacology</i> , 2010 , 62, 1084-8	4.8	11
88	Pharmacokinetic interaction between DA-8159, a new erectogenic, and metformin in rats: competitive inhibition of metabolism via hepatic CYP3A1/2. <i>British Journal of Pharmacology</i> , 2008 , 153, 1568-78	8.6	11
87	Effect of plant matrix and fluid ethanol concentration on supercritical fluid extraction efficiency of schisandrin derivatives. <i>Journal of Chromatographic Science</i> , 1999 , 37, 457-61	1.4	11
86	Selective extraction of ephedrine fromEphedra sinica using mixtures of CO2, diethylamine, and methanol. <i>Chromatographia</i> , 1999 , 50, 673-679	2.1	11
85	Discrimination of wild types and hybrids of Duboisia myoporoides and Duboisia leichhardtii at different growth stages using H NMR-based metabolite profiling and tropane alkaloids-targeted HPLC-MS analysis. <i>Phytochemistry</i> , 2016 , 131, 44-56	4	11
84	Identification of a Collagenase-Inhibiting Flavonoid from Alchemilla vulgaris Using NMR-Based Metabolomics. <i>Planta Medica</i> , 2018 , 84, 941-946	3.1	11
83	Metabolic variation in Cistus monspeliensis L. ecotypes correlated to their plant-fungal interactions. <i>Phytochemistry</i> , 2020 , 176, 112402	4	10
82	Genotypic differences in metabolomic changes during storage induced-degreening of chrysanthemum disk florets. <i>Postharvest Biology and Technology</i> , 2016 , 115, 48-59	6.2	10

(2012-2018)

81	Metabolic discrimination of pine resins using multiple analytical platforms. <i>Phytochemistry</i> , 2018 , 155, 37-44	4	10
80	Metabolic characterization of green pods from Vanilla planifolia accessions grown in La Rūnion. <i>Environmental and Experimental Botany</i> , 2011 , 72, 258-265	5.9	10
79	Metabolomics: what's new?. Flavour and Fragrance Journal, 2010, 25, 128-131	2.5	10
78	Supercritical-fluid extraction of bilobalide and ginkgolides fromGinkgo biloba leaves by use of a mixture of carbon dioxide, methanol, and water. <i>Chromatographia</i> , 2002 , 56, 753-757	2.1	10
77	A new triterpene lactone from the roots of Patrinia scabiosaefolia. <i>Archives of Pharmacal Research</i> , 2001 , 24, 416-7	6.1	10
76	Modifier effects on supercritical CO2 extraction efficiency of cephalotaxine from Cephalotaxus wilsoniana leaves. <i>Archives of Pharmacal Research</i> , 2000 , 23, 163-6	6.1	10
75	Identification of antiplasmodial triterpenes from Keetia species using NMR-based metabolic profiling. <i>Metabolomics</i> , 2019 , 15, 27	4.7	9
74	Metabolic changes in Euphorbia palusrtis latex after fungal infection. <i>Phytochemistry</i> , 2016 , 131, 17-25	4	9
73	Zebrafish as a Model for Systems Medicine R&D: Rethinking the Metabolic Effects of Carrier Solvents and Culture Buffers Determined by (1)H NMR Metabolomics. <i>OMICS A Journal of Integrative Biology</i> , 2016 , 20, 42-52	3.8	9
72	Environmentally benign supercritical CO2 extraction of galanthamine from floricultural crop waste of Narcissus pseudonarcissus. <i>Journal of Supercritical Fluids</i> , 2014 , 93, 7-19	4.2	9
71	Metabolome of Vanilla planifolia (Orchidaceae) and related species under Cymbidium mosaic virus (CymMV) infection. <i>Plant Physiology and Biochemistry</i> , 2012 , 60, 25-34	5.4	9
70	Metabolic changes of Brassica rapa transformed with a bacterial isochorismate synthase gene. <i>Journal of Plant Physiology</i> , 2010 , 167, 1525-32	3.6	9
69	Metabolic alterations in different developmental stages of Pilocarpus microphyllus. <i>Planta Medica</i> , 2011 , 77, 293-300	3.1	9
68	GenotypeĦnvironment interactions affect flower and fruit herbivory and plant chemistry of Arabidopsis thaliana in a transplant experiment. <i>Ecological Research</i> , 2009 , 24, 1161-1171	1.9	9
67	Slower clearance of intravenous metformin in rats with acute renal failure induced by uranyl nitrate: contribution of slower renal and non-renal clearances. <i>European Journal of Pharmaceutical Sciences</i> , 2010 , 39, 1-7	5.1	9
66	Metabolomic Analysis of Catharanthus roseus Using NMR and Principal Component Analysis 2006 , 261-	276	9
65	Pharmacokinetics of 5-fluorouracil in rats with diabetes mellitus induced by streptozotocin. <i>Biopharmaceutics and Drug Disposition</i> , 2005 , 26, 93-8	1.7	9
64	Metabolite analysis of Cannabis sativa L. by NMR spectroscopy. <i>Methods in Molecular Biology</i> , 2012 , 815, 363-75	1.4	9

63	Increasing Metabolic Diversity in Marine Sponges Extracts by Controlling Extraction Parameters. <i>Marine Drugs</i> , 2018 , 16,	6	9
62	Investigation of species and environmental effects on rhubarb roots metabolome using H NMR combined with high performance thin layer chromatography. <i>Metabolomics</i> , 2018 , 14, 137	4.7	9
61	Influence of Geographical Location on the Metabolic Production of Giant Barrel Sponges (spp.) Revealed by Metabolomics Tools. <i>ACS Omega</i> , 2020 , 5, 12398-12408	3.9	8
60	Metabolic effects of cannabinoids in zebrafish (Danio rerio) embryos determined by 1H NMR metabolomics. <i>Metabolomics</i> , 2016 , 12, 1	4.7	8
59	Red wines attenuate TNF production in human histiocytic lymphoma cell line: an NMR spectroscopy and chemometrics based study. <i>Food Chemistry</i> , 2013 , 141, 3124-30	8.5	8
58	Investigation of the chemomarkers correlated with flower colour in different organs of Catharanthus roseus using NMR-based metabolomics. <i>Phytochemical Analysis</i> , 2014 , 25, 66-74	3.4	8
57	New phytochemicals from the corms of medicinally important South African Hypoxis species. <i>Phytochemistry Letters</i> , 2014 , 10, lxix-lxxv	1.9	8
56	HPLC-electrospray ionization-MS-MS analysis of Cephalotaxus harringtonia leaves and enhancement of the extraction efficiency of alkaloids therein by SFE. <i>Journal of Chromatographic Science</i> , 2003 , 41, 67-72	1.4	8
55	A steroidal glycoside from Lepisorus ussuriensis. <i>Phytochemistry</i> , 1999 , 51, 453-456	4	8
54	A flavonoid diglycoside from Lepisorus ussuriensis. <i>Phytochemistry</i> , 1996 , 43, 1111-3	4	8
53	Antibiotic adjuvants from Buxus sempervirens to promote effective treatment of drug-resistant Staphylococcus aureus biofilms. <i>RSC Advances</i> , 2016 , 6, 95000-95009	3.7	8
52	Global warming shifts the composition of the abundant bacterial phyllosphere microbiota as indicated by a cultivation-dependent and -independent study of the grassland phyllosphere of a long-term warming field experiment. <i>FEMS Microbiology Ecology</i> , 2020 , 96,	4.3	7
51	Nuclear Magnetic Resonance Spectroscopy for Plant Metabolite Profiling 2013 , 57-76		7
50	Pharmacokinetics and first-pass effects of epsilon-acetamidocaproic acid after administration of zinc acexamate in rats. <i>Xenobiotica</i> , 2010 , 40, 485-98	2	7
49	Supercritical fluid extraction and bioassay identification of prodrug substances from natural resources. <i>Korean Journal of Chemical Engineering</i> , 1997 , 14, 109-116	2.8	7
48	Pharmacokinetics of 5-fluorouracil in mutant Nagase analbuminemic rats: faster metabolism of 5-fluorouracil via CYP1A. <i>Biopharmaceutics and Drug Disposition</i> , 2007 , 28, 87-95	1.7	7
47	Chrysopentamine, an antiplasmodial anhydronium base from Strychnos usambarensis leaves. <i>Planta Medica</i> , 2004 , 70, 72-6	3.1	7
46	Antimutagenic, antigenotoxic and antiproliferative activities of Fraxinus angustifolia Vahl. leaves and stem bark extracts and their phytochemical composition. <i>PLoS ONE</i> , 2020 , 15, e0230690	3.7	7

45	Effect of Benzothiadiazole on the Metabolome of Tomato Plants Infected by Citrus Exocortis Viroid. <i>Viruses</i> , 2019 , 11,	6.2	6
44	NMR Analysis of Fecal Samples. <i>Methods in Molecular Biology</i> , 2018 , 1730, 317-328	1.4	5
43	Metabolic Profiling of Saponin-Rich Ophiopogon japonicus Roots Based on 1H NMR and HPTLC Platforms. <i>Planta Medica</i> , 2019 , 85, 917-924	3.1	5
42	INVESTIGATION OF BRASSICA BIOCHEMICAL STATUS BY NMR-BASED METABOLOMICS. <i>Acta Horticulturae</i> , 2012 , 163-172	0.3	5
41	Effects of cysteine on metformin pharmacokinetics in rats with protein-calorie malnutrition: partial restoration of some parameters to control levels. <i>Journal of Pharmacy and Pharmacology</i> , 2008 , 60, 153	- €1 8	5
40	Effects of bacterial lipopolysaccharide on the pharmacokinetics of metformin in rats. <i>International Journal of Pharmaceutics</i> , 2007 , 337, 194-201	6.5	5
39	New pregnane glycosides from Cynanchum ascyrifolium. <i>Chemical and Pharmaceutical Bulletin</i> , 2002 , 50, 847-9	1.9	5
38	Natural deep eutectic solvents as biofilm structural breakers. <i>Water Research</i> , 2021 , 201, 117323	12.5	5
37	NMR-Based Metabolomics Analysis 2013 , 209-238		4
36	Limitation of Mitragynine Biosynthesis in Mitragyna speciosa (Roxb.) Korth. through Tryptamine Availability. <i>Zeitschrift Fur Naturforschung - Section C Journal of Biosciences</i> , 2013 , 68, 394-405	1.7	4
35	Pharmacokinetic interaction between ?-acetamidocaproic acid (AACA) and cimetidine in indomethacin-induced acute gastric ulcer and control rats: inhibition of active renal secretion of AACA by cimetidine. <i>Xenobiotica</i> , 2011 , 41, 409-15	2	4
34	Effects of water deprivation on the pharmacokinetics of metformin in rats. <i>Biopharmaceutics and Drug Disposition</i> , 2007 , 28, 373-83	1.7	4
33	Synergy: Easier to say than to prove. <i>Synergy</i> , 2018 , 7, 34-35	0.9	4
32	Single Step Purification of Salicylic Acid from Catharanthus roseus Cell Culture (Plant Material) by Anion Exchange for NMR Analysis. <i>Journal of Liquid Chromatography and Related Technologies</i> , 2008 , 31, 702-713	1.3	3
31	Natural Deep Eutectic Solvents: From Their Discovery to Their Applications 2019 , 61-81		3
30	Localization of Major Ephedra Alkaloids in Whole Aerial Parts of Ephedrae Herba Using Direct Analysis in Real Time-Time of Flight-Mass Spectrometry. <i>Molecules</i> , 2021 , 26,	4.8	3
29	Metabolomics on the study of marine organisms <i>Metabolomics</i> , 2022 , 18, 17	4.7	3
28	Lugdunomycin, an Angucycline-Derived Molecule with Unprecedented Chemical Architecture. Angewandte Chemie, 2019 , 131, 2835-2840	3.6	2

27	Soil Inoculation Alters Leaf Metabolic Profiles in Genetically Identical Plants. <i>Journal of Chemical Ecology</i> , 2020 , 46, 745-755	2.7	2
26	Co-cultivation of Synechocystis salina and Pseudokirchneriella subcapitata under varying phosphorus concentrations evidences an allelopathic competition scenario. <i>RSC Advances</i> , 2016 , 6, 5609	9}:-561	00
25	Metabolomics reveals novel insight on dormancy of aquatic invertebrate encysted embryos. <i>Scientific Reports</i> , 2019 , 9, 8878	4.9	2
24	New Methods of Analysis and Investigation of Terpenoid Indole Alkaloids. <i>Advances in Botanical Research</i> , 2013 , 68, 233-272	2.2	2
23	Metabolic fingerprinting of banana passion fruits and its correlation with quorum quenching activity. <i>Phytochemistry</i> , 2020 , 172, 112272	4	2
22	CHAPTER 9:NMR-based Metabolomics: Understanding Plant Chemistry and Identification of Biologically Active Compounds. <i>New Developments in NMR</i> , 2018 , 246-263	0.9	2
21	Honey in traditional Chinese medicine: A guide to future applications of NADES to medicines. <i>Advances in Botanical Research</i> , 2021 , 97, 361-384	2.2	2
20	Natural deep eutectic solvents in plants and plant cells: In vitro evidence for their possible functions. <i>Advances in Botanical Research</i> , 2021 , 159-184	2.2	2
19	Flavonol glycosides from aerial parts of Astragalus thracicus Griseb. <i>Phytochemistry Letters</i> , 2021 , 41, 119-122	1.9	2
18	Application of eco-metabolomics in biological science 2016,		1
17	Time-dependent effects of Klebsiella pneumoniae endotoxin on the pharmacokinetics of chlorzoxazone and its main metabolite, 6-hydroxychlorzoxazone, in rats: restoration of the parameters in 96 hour in KPLPS rats to control levels. <i>Biopharmaceutics and Drug Disposition</i> , 2009 ,	1.7	1
16	30, 485-93 Effect of Functional Groups on the Solubilities of Coumarin Derivatives in Supercritical Carbon Dioxide. <i>ACS Symposium Series</i> , 1997 , 110-118	0.4	1
15	Preanalytical Treatments: Extraction With Deep Eutectic Solvents 2020 , 565-590		1
14	Morphological and Chemical Factors Related to Western Flower Thrips Resistance in the Ornamental Gladiolus. <i>Plants</i> , 2021 , 10,	4.5	1
13	Latex Metabolome of Euphorbia Species: Geographical and Inter-Species Variation and its Proposed Role in Plant Defense against Herbivores and Pathogens. <i>Journal of Chemical Ecology</i> , 2021 , 47, 564-576	5 ^{2.7}	0
12	Structural properties and stability of the Betaine-Urea natural deep eutectic solvent. <i>Journal of Molecular Liquids</i> , 2021 , 343, 117655	6	O
11	Seasonal Changes in Starch Content in Trophopods of Matteuccia struthiopteris. <i>American Fern Journal</i> , 2016 , 106, 153-160	0.6	

LIST OF PUBLICATIONS

9	Metabolic variation in Caribbean giant barrel sponges: Influence of age and sea-depth. <i>Marine Environmental Research</i> , 2021 , 172, 105503	3.3
8	Host and Guest: Vanilla Inhabited by Endophytes 2016 , 1-28	
7	Host and Guest: Vanilla Inhabited by Endophytes 2017 , 191-217	
6	Chemical Differentiation of Plant Latexes and Their Anti-herbivory Activity against Thrips Frankliniella occidentalis. <i>Planta Medica</i> , 2021 , 87, 1032-1044	3.1
5	Natural deep eutectic solvents present in plant exudates? A case study on the saps of Drosera species. <i>Advances in Botanical Research</i> , 2021 , 253-269	2.2
4	HPTLC, A Supplementary Tool for Metabolic Profiling and Metabolomics 2018 , 59-59	
3	Limitation of mitragynine biosynthesis in Mitragyna speciosa (Roxb.) Korth. through tryptamine availability. <i>Zeitschrift Fur Naturforschung - Section C Journal of Biosciences</i> , 2013 , 68, 394-405	1.7
2	Faster clearance of mirodenafil in rats with acute renal failure induced by uranyl nitrate: contribution of increased protein expression of hepatic CYP3A1 and intestinal CYP1A1 and 3A1/2. <i>Journal of Pharmacy and Pharmacology</i> , 2009 , 61, 1325-32	4.8

1 Metabolomics9-28