Kevin Lam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7890310/publications.pdf Version: 2024-02-01

KEVINLAN

#	Article	IF	CITATIONS
1	Electrosynthesis Using Carboxylic Acid Derivatives: New Tricks for Old Reactions. Accounts of Chemical Research, 2020, 53, 121-134.	7.6	109
2	Organic electrosynthesis: from academia to industry. Reaction Chemistry and Engineering, 2020, 5, 977-990.	1.9	97
3	Bridging Lab and Industry with Flow Electrochemistry. IScience, 2020, 23, 101720.	1.9	89
4	A practical guide to electrosynthesis. Nature Reviews Chemistry, 2022, 6, 275-286.	13.8	80
5	Using Toluates as Simple and Versatile Radical Precursors. Organic Letters, 2008, 10, 2773-2776.	2.4	64
6	Novel Electrochemical Deoxygenation Reaction Using Diphenylphosphinates. Organic Letters, 2011, 13, 406-409.	2.4	51
7	An Anodic Method for Covalent Attachment of Molecules to Electrodes through an Ethynyl Linkage. Journal of the American Chemical Society, 2013, 135, 2939-2942.	6.6	51
8	Electrochemical synthesis of phthalides via anodic activation of aromatic carboxylic acids. Chemical Communications, 2017, 53, 8451-8454.	2.2	42
9	Chemoselective Chemical and Electrochemical Deprotections of Aromatic Esters. Organic Letters, 2009, 11, 2752-2755.	2.4	40
10	Anodic Oxidation of Disulfides: Detection and Reactions of Disulfide Radical Cations. Journal of Organic Chemistry, 2013, 78, 8020-8027.	1.7	38
11	Supportingâ€Electrolyteâ€Free Electrochemical Methoxymethylation of Alcohols Using a 3Dâ€Printed Electrosynthesis Continuous Flow Cell System. ChemElectroChem, 2019, 6, 4144-4148.	1.7	35
12	Organic electrosynthesis using toluates as simple and versatile radical precursors. Chemical Communications, 2009, , 95-97.	2.2	32
13	Electrochemical methoxymethylation of alcohols – a new, green and safe approach for the preparation of MOM ethers and other acetals. Chemical Communications, 2018, 54, 9969-9972.	2.2	32
14	Toluates: unexpectedly versatile reagents. Tetrahedron, 2009, 65, 10930-10940.	1.0	31
15	Covalent Attachment of Porphyrins and Ferrocenes to Electrode Surfaces through Direct Anodic Oxidation of Terminal Ethynyl Groups. Angewandte Chemie - International Edition, 2013, 52, 12897-12900.	7.2	31
16	Economical, Green, and Safe Route Towards Substituted Lactones by Anodic Generation of Oxycarbonyl Radicals. Angewandte Chemie - International Edition, 2019, 58, 16115-16118.	7.2	31
17	Oligogermanes Containing Only Electron-Withdrawing Substituents: Synthesis and Properties. Organometallics, 2017, 36, 298-309.	1.1	26
18	Molecular Oligogermanes and Related Compounds: Structure, Optical and Semiconductor Properties. Chemistry - an Asian Journal, 2017, 12, 1240-1249.	1.7	23

Κένιν Lam

#	Article	IF	CITATIONS
19	Polyferrocenylsilane homopolymers and diblock copolymers with pendant ruthenocenyl groups by photocontrolled ring-opening polymerisation. Polymer Chemistry, 2014, 5, 1264-1274.	1.9	21
20	Oligothienyl catenated germanes and silanes: synthesis, structure, and properties. Dalton Transactions, 2018, 47, 5431-5444.	1.6	21
21	Kolbe Anodic Decarboxylation as a Green Way To Access 2-Pyrrolidinones. Organic Letters, 2020, 22, 1771-1775.	2.4	21
22	Synthesis of Diketones, Ketoesters, and Tetraketones by Electrochemical Oxidative Decarboxylation of Malonic Acid Derivatives: Application to the Synthesis of <i>cis</i> -Jasmone. Journal of Organic Chemistry, 2018, 83, 12044-12055.	1.7	20
23	Shedding light on the use of Cu(<scp>ii</scp>)-salen complexes in the A ³ coupling reaction. Dalton Transactions, 2020, 49, 289-299.	1.6	20
24	Anodic Oxidation of Dithiane Carboxylic Acids: A Rapid and Mild Way to Access Functionalized Orthoesters. Organic Letters, 2020, 22, 4000-4005.	2.4	17
25	Structural and Electronic Control of the Bidentate 1â€{2â€pyridyl)benzotriazole Ligand in Copper Chemistry with Application to Catalysis in the A ³ Coupling Reaction. Chemistry - A European Journal, 2021, 27, 4394-4400.	1.7	16
26	Electrochemical Deoxygenation of Primary Alcohols. Synlett, 2012, 23, 1235-1239.	1.0	15
27	Anodic Methods for Covalent Attachment of Ethynylferrocenes to Electrode Surfaces: Comparison of Ethynyl Activation Processes. Langmuir, 2016, 32, 1645-1657.	1.6	14
28	Novel organometallic chloroquine derivative inhibits tumor growth. Journal of Cellular Biochemistry, 2018, 119, 5921-5933.	1.2	14
29	Regioselective Electrochemical Cyclobutanol Ring Expansion to 1â€Tetralones. European Journal of Organic Chemistry, 2021, 2021, 854-858.	1.2	14
30	MetalMetal Bond Formation Between [<i>n</i>]Metallocenophanes: Synthesis and Characterisation of a Dicarba[2]ruthenocenophanium Dimer. Chemistry - A European Journal, 2012, 18, 8000-8003.	1.7	13
31	Supporting-Electrolyte-Free Anodic Oxidation of Oxamic Acids into Isocyanates: An Expedient Way to Access Ureas, Carbamates, and Thiocarbamates. Organic Process Research and Development, 2021, 25, 2614-2621.	1.3	13
32	Donor-acceptor molecular oligogermanes: Novel properties and structural aspects. Journal of Organometallic Chemistry, 2018, 867, 228-237.	0.8	11
33	Room-Temperature Cu(II) Radical-Triggered Alkyne C–H Activation. Jacs Au, 2021, 1, 1937-1948.	3.6	11
34	Electrosynthesis of Stabilized Diazo Compounds from Hydrazones. Organic Letters, 2022, 24, 4665-4669.	2.4	11
35	Synthesis and anodic electrochemistry of cymanquine and related complexes. Journal of Organometallic Chemistry, 2016, 817, 15-20.	0.8	10
36	Nickel(II) and nickel(0) complexes of bis(diisopropylphosphino)amine: Synthesis, structure, and electrochemical activity. Inorganica Chimica Acta, 2016, 453, 42-50.	1.2	10

Κένιν Lam

#	Article	IF	CITATIONS
37	One-electron oxidation of chloroquine, cymanquine, and related aminoquinolines in nonaqueous media. Journal of Electroanalytical Chemistry, 2017, 799, 531-537.	1.9	9
38	Spontaneous attachment of lithium-activated ferrocenylalkynes to carbon and gold. Electrochemistry Communications, 2015, 52, 63-66.	2.3	8
39	Anodic Oxidation of Aminotetrazoles: A Mild and Safe Route to Isocyanides. Organic Letters, 2021, 23, 9371-9375.	2.4	8
40	Electron-transfer catalyzed cycloaddition reactions of unactivated cyclic olefins in weakly coordinating anion electrolyte. Journal of Electroanalytical Chemistry, 2015, 743, 68-77.	1.9	7
41	Aryl Germanes as Ligands for Transition Polymetallic Complexes: Synthesis, Structure, and Properties. European Journal of Inorganic Chemistry, 2019, 2019, 2750-2760.	1.0	7
42	Aryl Oligogermanes as Ligands for Transition Metal Complexes. European Journal of Inorganic Chemistry, 2018, 2018, 4911-4924.	1.0	6
43	Influence of Cyclopentadienyl Ringâ€Tilt on Electronâ€Transfer Reactions: Redoxâ€Induced Reactivity of Strained [2] and [3]Ruthenocenophanes. Chemistry - A European Journal, 2014, 20, 16216-16227.	1.7	5
44	C(sp 3)â^'C(sp 3) Bond Formation via Electrochemical Alkoxylation and Subsequent Lewis Acid Promoted Reactions. Advanced Synthesis and Catalysis, 2021, 363, 4521.	2.1	5
45	Reactions of N-heterocyclic Carbene-Based Chalcogenoureas with Halogens: A Diverse Range of Outcomes. Dalton Transactions, 2022, , .	1.6	5
46	Unleashing the Potential to Electrify Process Chemistry: From Bench to Plant. Organic Process Research and Development, 2021, 25, 2579-2580.	1.3	5
47	Redox Chemistry of Nickelocene-Based Monomers and Polymers. Organometallics, 2021, 40, 1945-1955.	1.1	4
48	Expedient Access to Cyanated Nâ€Heterocycles by Direct Flowâ€Electrochemical C(sp ²)â^'H Activation. Chemistry - A European Journal, 2022, 28, .	1.7	4
49	Economical, Green, and Safe Route Towards Substituted Lactones by Anodic Generation of Oxycarbonyl Radicals. Angewandte Chemie, 2019, 131, 16261-16264.	1.6	3
50	Electrosynthesis: A practical way to access highly reactive intermediates. Synlett, 0, , .	1.0	3
51	Anodic Oxidation of Ethynylferrocene Derivatives in Homogeneous Solution and Following Anodic Deposition onto Glassy Carbon Electrodes. ChemElectroChem, 2019, 6, 5880-5887.	1.7	2
52	Continuous Flow Electrochemical Oxidative Cyclization and Successive Functionalization of 2-Pyrrolidinones. Organic Process Research and Development, 2021, 25, 2631-2638.	1.3	1
53	14 Electrochemistry in Natural Product Synthesis. , 2022, , .		0