Dinggeng He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7890191/publications.pdf

Version: 2024-02-01

111975 76031 4,890 91 42 67 citations h-index g-index papers 92 92 92 7110 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photothermally activated multifunctional MoS2 bactericidal nanoplatform for combined chemo/photothermal/photodynamic triple-mode therapy of bacterial and biofilm infections. Chemical Engineering Journal, 2022, 429, 132600.	6.6	58
2	Pd-Cu nanoalloy for dual stimuli-responsive chemo-photothermal therapy against pathogenic biofilm bacteria. Acta Biomaterialia, 2022, 137, 276-289.	4.1	37
3	An Ultrasmall Fe ₃ O ₄ â€Decorated Polydopamine Hybrid Nanozyme Enables Continuous Conversion of Oxygen into Toxic Hydroxyl Radical via GSHâ€Depleted Cascade Redox Reactions for Intensive Wound Disinfection. Small, 2022, 18, e2105465.	5.2	63
4	Targeting effect of berberine on type I fimbriae of Salmonella Typhimurium and its effective inhibition of biofilm. Applied Microbiology and Biotechnology, 2021, 105, 1563-1573.	1.7	21
5	Ferrocene-functionalized hybrid hydrogel dressing with high-adhesion for combating biofilm. Materials Science and Engineering C, 2021, 125, 112111.	3.8	12
6	Gold–Platinum Nanodots with High-Peroxidase-like Activity and Photothermal Conversion Efficiency for Antibacterial Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 37535-37544.	4.0	60
7	Magnetically retained and glucose-fueled hydroxyl radical nanogenerators for H2O2-self-supplying chemodynamic therapy of wound infections. Materials Science and Engineering C, 2021, 131, 112522.	3.8	27
8	Efficient Eradication of Bacterial Biofilms with Highly Specific Graphene-Based Nanocomposite Sheets. ACS Biomaterials Science and Engineering, 2021, 7, 5118-5128.	2.6	7
9	A photosensitizer-loaded zinc oxide-polydopamine core-shell nanotherapeutic agent for photodynamic and photothermal synergistic therapy of cancer cells. Chinese Chemical Letters, 2020, 31, 189-192.	4.8	42
10	Direct and sensitive detection of circulating miRNA in human serum by ligase-mediated amplification. Talanta, 2020, 206, 120217.	2.9	18
11	Liposome-Stabilized Black Phosphorus for Photothermal Drug Delivery and Oxygen Self-Enriched Photodynamic Therapy. ACS Applied Nano Materials, 2020, 3, 563-575.	2.4	32
12	A sandwich-type surface-enhanced Raman scattering sensor using dual aptamers and gold nanoparticles for the detection of tumor extracellular vesicles. Analyst, The, 2020, 145, 6232-6236.	1.7	11
13	A three-dimensional multipedal DNA walker for the ultrasensitive detection of tumor exosomes. Chemical Communications, 2020, 56, 12949-12952.	2.2	27
14	<i>In situ</i> multiplex detection of serum exosomal microRNAs using an all-in-one biosensor for breast cancer diagnosis. Analyst, The, 2020, 145, 3289-3296.	1.7	57
15	A fluorometric assay of thrombin using magnetic nanoparticles and enzyme-free hybridization chain reaction. Mikrochimica Acta, 2020, 187, 295.	2.5	10
16	A hybridization-triggered DNAzyme cascade assay for enzyme-free amplified fluorescence detection of nucleic acids. Analyst, The, 2019, 144, 143-147.	1.7	9
17	Highly sensitive quantification of Alzheimer's disease biomarkers by aptamer-assisted amplification. Theranostics, 2019, 9, 2939-2949.	4.6	44
18	Total internal reflection-based single-vesicle in situ quantitative and stoichiometric analysis of tumor-derived exosomal microRNAs for diagnosis and treatment monitoring. Theranostics, 2019, 9, 4494-4507.	4.6	77

#	Article	IF	CITATIONS
19	Direct immunomagnetic detection of low abundance cardiac biomarker by aptamer DNA nanocomplex. Sensors and Actuators B: Chemical, 2019, 291, 200-206.	4.0	9
20	Molecular-Recognition-Based DNA Nanodevices for Enhancing the Direct Visualization and Quantification of Single Vesicles of Tumor Exosomes in Plasma Microsamples. Analytical Chemistry, 2019, 91, 2768-2775.	3.2	69
21	Exosomes: Isolation, Analysis, and Applications in Cancer Detection and Therapy. ChemBioChem, 2019, 20, 451-461.	1.3	92
22	Label-free and sensitive microRNA detection based on a target recycling amplification-integrated superlong poly(thymine)-hosted copper nanoparticle strategy. Analytica Chimica Acta, 2018, 1010, 54-61.	2.6	33
23	Enzyme-free quantification of exosomal microRNA by the target-triggered assembly of the polymer DNAzyme nanostructure. Analyst, The, 2018, 143, 813-816.	1.7	26
24	An ion quencher operated lamp for multiplexed fluorescent bioassays. Analytical and Bioanalytical Chemistry, 2018, 410, 1427-1434.	1.9	1
25	Hairpin-Contained i-Motif Based Fluorescent Ratiometric Probe for High-Resolution and Sensitive Response of Small pH Variations. Analytical Chemistry, 2018, 90, 1889-1896.	3.2	58
26	Recent progress in live cell mRNA/microRNA imaging probes based on smart and versatile nanomaterials. Journal of Materials Chemistry B, 2018, 6, 7773-7793.	2.9	25
27	Programmable Target-Initiated DNAzyme Walker Walking along a Spatially Isolated and Highly Hybridizable Substrate Track on a Nanoparticle Surface. ACS Applied Materials & Interfaces, 2018, 10, 44546-44553.	4.0	66
28	DNA-Functionalized Hollow Mesoporous Silica Nanoparticles with Dual Cargo Loading for Near-Infrared-Responsive Synergistic Chemo-Photothermal Treatment of Cancer Cells. ACS Applied Nano Materials, 2018, 1, 3486-3497.	2.4	44
29	A zeolitic imidazolate framework-8-based indocyanine green theranostic agent for infrared fluorescence imaging and photothermal therapy. Journal of Materials Chemistry B, 2018, 6, 3914-3921.	2.9	48
30	Ultra-pH-responsive split i-motif based aptamer anchoring strategy for specific activatable imaging of acidic tumor microenvironment. Chemical Communications, 2018, 54, 10288-10291.	2,2	33
31	DNA nanotriangle-scaffolded activatable aptamer probe with ultralow background and robust stability for cancer theranostics. Theranostics, 2018, 8, 4062-4071.	4.6	40
32	A smart ZnO@polydopamine-nucleic acid nanosystem for ultrasensitive live cell mRNA imaging by the target-triggered intracellular self-assembly of active DNAzyme nanostructures. Chemical Science, 2017, 8, 2832-2840.	3.7	87
33	Synthesis of a core/satellite-like multifunctional nanocarrier for pH- and NIR-triggered intracellular chemothermal therapy and tumor imaging. RSC Advances, 2017, 7, 7742-7752.	1.7	13
34	A versatile stimulus-responsive metal–organic framework for size/morphology tunable hollow mesoporous silica and pH-triggered drug delivery. Journal of Materials Chemistry B, 2017, 5, 2126-2132.	2.9	75
35	A metal–organic framework based nanocomposite with co-encapsulation of Pd@Au nanoparticles and doxorubicin for pH- and NIR-triggered synergistic chemo-photothermal treatment of cancer cells. Journal of Materials Chemistry B, 2017, 5, 4648-4659.	2.9	44
36	Highly Fe ³⁺ -Selective Fluorescent Nanoprobe Based on Ultrabright N/P Codoped Carbon Dots and Its Application in Biological Samples. Analytical Chemistry, 2017, 89, 7477-7484.	3.2	277

#	Article	IF	Citations
37	Label-free and sensitive assay for deoxyribonuclease I activity based on enzymatically-polymerized superlong poly(thymine)-hosted fluorescent copper nanoparticles. Talanta, 2017, 169, 57-63.	2.9	34
38	Dumbbell DNA-templated CuNPs as a nano-fluorescent probe for detection of enzymes involved in ligase-mediated DNA repair. Biosensors and Bioelectronics, 2017, 94, 456-463.	5.3	40
39	Temperature-responsive split aptamers coupled with polymerase chain reaction for label-free and sensitive detection of cancer cells. Chemical Communications, 2017, 53, 11889-11892.	2.2	26
40	A selective nanosensor for ultrafast detection of Cu ²⁺ ions based on C5 DNA-templated gold nanoclusters and Fenton-like reaction. Analytical Methods, 2017, 9, 6222-6227.	1.3	8
41	Glutathioneâ€Activatable and O ₂ /Mn ²⁺ â€Evolving Nanocomposite for Highly Efficient and Selective Photodynamic and Geneâ€Silencing Dual Therapy. Advanced Functional Materials, 2017, 27, 1704089.	7.8	102
42	Label-Free Homogeneous Electrochemical Sensing Platform for Protein Kinase Assay Based on Carboxypeptidase Y-Assisted Peptide Cleavage and Vertically Ordered Mesoporous Silica Films. Analytical Chemistry, 2017, 89, 9062-9068.	3.2	42
43	Facile fabrication of a resveratrol loaded phospholipid@reduced graphene oxide nanoassembly for targeted and near-infrared laser-triggered chemo/photothermal synergistic therapy of cancer in vivo. Journal of Materials Chemistry B, 2017, 5, 5783-5792.	2.9	31
44	Biomimetic synthesis of highly biocompatible gold nanoparticles with amino acid-dithiocarbamate as a precursor for SERS imaging. Nanotechnology, 2016, 27, 105603.	1.3	13
45	Triple-helix molecular switch-induced hybridization chain reaction amplification for developing a universal and sensitive electrochemical aptasensor. RSC Advances, 2016, 6, 90310-90317.	1.7	13
46	Single-layer MnO ₂ nanosheet quenched fluorescence ruthenium complexes for sensitive detection of ferrous iron. RSC Advances, 2016, 6, 79204-79208.	1.7	18
47	Oligonucleotide-templated rapid formation of fluorescent gold nanoclusters and its application for Hg2+ ions sensing. Talanta, 2016, 161, 170-176.	2.9	22
48	Synthesis of Hollow Mesoporous Silica Nanorods with Controllable Aspect Ratios for Intracellular Triggered Drug Release in Cancer Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20558-20569.	4.0	31
49	Vertically Ordered Mesoporous Silica Film-Assisted Label-Free and Universal Electrochemiluminescence Aptasensor Platform. Analytical Chemistry, 2016, 88, 11707-11713.	3.2	45
50	Hairpin DNA-fueled dynamic self-assembly of three-arm DNA branched junctions consisting of active DNAzyme structures for enzyme-free ultrasensitive detection of nucleic acids. Analytical Methods, 2016, 8, 8262-8265.	1.3	3
51	Label-Free Carbon-Dots-Based Ratiometric Fluorescence pH Nanoprobes for Intracellular pH Sensing. Analytical Chemistry, 2016, 88, 7837-7843.	3.2	253
52	Alizarin Complexone Functionalized Mesoporous Silica Nanoparticles: A Smart System Integrating Glucose-Responsive Double-Drugs Release and Real-Time Monitoring Capabilities. ACS Applied Materials & Los Amplied Materials & Los Applied & Los Applie	4.0	50
53	Dopamine modulated ionic permeability in mesoporous silica sphere based biomimetic compartment. Colloids and Surfaces B: Biointerfaces, 2016, 142, 266-271.	2.5	1
54	Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges. Analytical and Bioanalytical Chemistry, 2016, 408, 2793-2811.	1.9	37

#	Article	IF	Citations
55	Cu–Au alloy nanostructures coated with aptamers: a simple, stable and highly effective platform for in vivo cancer theranostics. Nanoscale, 2016, 8, 2260-2267.	2.8	27
56	Tumor cell-specific split aptamers: target-driven and temperature-controlled self-assembly on the living cell surface. Chemical Communications, 2016, 52, 1482-1485.	2.2	22
57	Glutathione-Mediated Degradation of Surface-Capped MnO ₂ for Drug Release from Mesoporous Silica Nanoparticles to Cancer Cells. Particle and Particle Systems Characterization, 2015, 32, 205-212.	1.2	46
58	Noncovalent assembly of reduced graphene oxide and alkyl-grafted mesoporous silica: an effective drug carrier for near-infrared light-responsive controlled drug release. Journal of Materials Chemistry B, 2015, 3, 5588-5594.	2.9	24
59	Poly(thymine)-Templated Copper Nanoparticles as a Fluorescent Indicator for Hydrogen Peroxide and Oxidase-Based Biosensing. Analytical Chemistry, 2015, 87, 7454-7460.	3.2	102
60	lodide-Responsive Cu–Au Nanoparticle-Based Colorimetric Platform for Ultrasensitive Detection of Target Cancer Cells. Analytical Chemistry, 2015, 87, 7141-7147.	3.2	75
61	Masking agent-free and channel-switch-mode simultaneous sensing of Fe ³⁺ and Hg ²⁺ using dual-excitation graphene quantum dots. Analyst, The, 2015, 140, 3925-3928.	1.7	52
62	A highly sensitive electrochemiluminescence assay for protein kinase based on double-quenching of graphene quantum dots by G-quadruplex–hemin and gold nanoparticles. Biosensors and Bioelectronics, 2015, 70, 54-60.	5.3	60
63	A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of <i>Staphylococcus aureus</i> . Analyst, The, 2015, 140, 4489-4497.	1.7	56
64	Programmed packaging of mesoporous silica nanocarriers for matrix metalloprotease 2-triggered tumor targeting and release. Biomaterials, 2015, 58, 35-45.	5.7	88
65	A sensitive turn-on fluorescent probe for intracellular imaging of glutathione using single-layer MnO ₂ nanosheet-quenched fluorescent carbon quantum dots. Chemical Communications, 2015, 51, 14764-14767.	2.2	115
66	A reversible molecule-gated system using mesoporous silica nanoparticles functionalized with K ⁺ -stabilized G-rich quadruplex DNA. RSC Advances, 2015, 5, 84553-84559.	1.7	3
67	A dopamine responsive nano-container for the treatment of pheochromocytoma cells based on mesoporous silica nanoparticles capped with DNA-templated silver nanoparticles. Journal of Materials Chemistry B, 2015, 3, 7135-7142.	2.9	10
68	Redox-responsive degradable honeycomb manganese oxide nanostructures as effective nanocarriers for intracellular glutathione-triggered drug release. Chemical Communications, 2015, 51, 776-779.	2.2	61
69	Adenosine-5′-Triphosphate Aptamer Containing Triple-Helix DNA Capped Mesoporous Silica Nanoparticles for Controlled Release. Science of Advanced Materials, 2015, 7, 377-383.	0.1	1
70	dsDNA-templated fluorescent copper nanoparticles: poly(AT-TA)-dependent formation. RSC Advances, 2014, 4, 61092-61095.	1.7	52
71	Inorganic fluorescent nanoprobes for cellular and subcellular imaging. TrAC - Trends in Analytical Chemistry, 2014, 58, 120-129.	5.8	31
72	A pH-responsive polymer/mesoporous silica nano-container linked through an acid cleavable linker for intracellular controlled release and tumor therapy in vivo. Journal of Materials Chemistry B, 2014, 2, 428-436.	2.9	76

#	Article	IF	CITATIONS
73	Target-Catalyzed Dynamic Assembly-Based Pyrene Excimer Switching for Enzyme-Free Nucleic Acid Amplified Detection. Analytical Chemistry, 2014, 86, 4934-4939.	3.2	76
74	Visual and Portable Strategy for Copper(II) Detection Based on a Striplike Poly(Thymine)-Caged and Microwell-Printed Hydrogel. Analytical Chemistry, 2014, 86, 11263-11268.	3.2	77
75	Nanometer-sized manganese oxide-quenched fluorescent oligonucleotides: an effective sensing platform for probing biomolecular interactions. Chemical Communications, 2014, 50, 11049.	2.2	72
76	dsDNA-specific fluorescent copper nanoparticles as a "green―nano-dye for polymerization-mediated biochemical analysis. Chemical Communications, 2014, 50, 12746-12748.	2,2	58
77	Au@Ag/Au nanoparticles assembled with activatable aptamer probes as smart "nano-doctors―for image-guided cancer thermotherapy. Nanoscale, 2014, 6, 8754.	2.8	77
78	Concatemeric dsDNA-Templated Copper Nanoparticles Strategy with Improved Sensitivity and Stability Based on Rolling Circle Replication and Its Application in MicroRNA Detection. Analytical Chemistry, 2014, 86, 6976-6982.	3.2	129
79	Co-loading of coralyne and indocyanine green into adenine DNA-functionalized mesoporous silica nanoparticles for pH- and near-infrared-responsive chemothermal treatment of cancer cells. Journal of Materials Chemistry B, 2014, 2, 6064.	2.9	30
80	Design and bioanalytical applications of DNA hairpin-based fluorescent probes. TrAC - Trends in Analytical Chemistry, 2014, 53, 11-20.	5.8	39
81	Ligation-rolling circle amplification combined with \hat{l}^3 -cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism. Talanta, 2014, 125, 306-312.	2.9	17
82	Remote-Controlled Drug Release from Graphene Oxide-Capped Mesoporous Silica to Cancer Cells by Photoinduced pH-Jump Activation. Langmuir, 2014, 30, 7182-7189.	1.6	70
83	Poly(thymine)â€Templated Selective Formation of Fluorescent Copper Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 9719-9722.	7.2	278
84	Label-Free and Turn-on Aptamer Strategy for Cancer Cells Detection Based on a DNA–Silver Nanocluster Fluorescence upon Recognition-Induced Hybridization. Analytical Chemistry, 2013, 85, 12011-12019.	3.2	173
85	Poly(Thymine)-Templated Fluorescent Copper Nanoparticles for Ultrasensitive Label-Free Nuclease Assay and Its Inhibitors Screening. Analytical Chemistry, 2013, 85, 12138-12143.	3.2	120
86	Regenerable Multifunctional Mesoporous Silica Nanocomposites for Simultaneous Detection and Removal of Mercury(II). Langmuir, 2013, 29, 5896-5904.	1.6	58
87	Polyacrylic Acid Modified Upconversion Nanoparticles for Simultaneous pH-Triggered Drug Delivery and Release Imaging. Journal of Biomedical Nanotechnology, 2013, 9, 2063-2072.	0.5	44
88	Intracellular acid-triggered drug delivery system using mesoporous silica nanoparticles capped with Tâ \in "Hg2+â \in "T base pairs mediated duplex DNA. Journal of Materials Chemistry B, 2013, 1, 1552.	2.9	29
89	Reversible stimuli-responsive controlled release using mesoporous silica nanoparticles functionalized with a smart DNA molecule-gated switch. Journal of Materials Chemistry, 2012, 22, 14715.	6.7	30
90	A Light-Responsive Reversible Molecule-Gated System Using Thymine-Modified Mesoporous Silica Nanoparticles. Langmuir, 2012, 28, 4003-4008.	1.6	94

#	Article	IF	CITATIONS
91	A Photonâ€Fueled Gateâ€Like Delivery System Using iâ€Motif DNA Functionalized Mesoporous Silica Nanoparticles. Advanced Functional Materials, 2012, 22, 4704-4710.	7.8	72