Jeremy A Bruenn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7889772/publications.pdf

Version: 2024-02-01

		218677	189892
57	2,631	26	50
papers	citations	h-index	g-index
57	57	57	2568
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Cellular production of a counterfeit viral protein confers immunity to infection by a related virus. PeerJ, 2018, 6, e5679.	2.0	3
2	Widespread mitovirus sequences in plant genomes. PeerJ, 2015, 3, e876.	2.0	71
3	Discovery and Evolution of Bunyavirids in Arctic Phantom Midges and Ancient Bunyavirid-Like Sequences in Insect Genomes. Journal of Virology, 2014, 88, 8783-8794.	3.4	80
4	Evidence that ebolaviruses and cuevaviruses have been diverging from marburgviruses since the Miocene. Peerl, 2014, 2, e556.	2.0	26
5	A novel RNA binding protein affects rbcL gene expression and is specific to bundle sheath chloroplasts in C4plants. BMC Plant Biology, 2013, 13, 138.	3.6	27
6	Selectively maintained paleoviruses in Holarctic water fleas reveal an ancient origin for phleboviruses. Virology, 2013, 446, 276-282.	2.4	25
7	Virus-host co-evolution under a modified nuclear genetic code. PeerJ, 2013, 1, e50.	2.0	27
8	Phylogeny, integration and expression of sigma virus-like genes in Drosophila. Molecular Phylogenetics and Evolution, 2012, 65, 251-258.	2.7	32
9	Genes from Double-Stranded RNA Viruses in the Nuclear Genomes of Fungi. , 2012, , 71-83.		2
10	Evolutionary maintenance of filovirus-like genes in bat genomes. BMC Evolutionary Biology, 2011, 11, 336.	3.2	50
11	Filoviruses are ancient and integrated into mammalian genomes. BMC Evolutionary Biology, 2010, 10, 193.	3.2	158
12	The evolution of novel fungal genes from non-retroviral RNA viruses. BMC Biology, 2009, 7, 88.	3.8	92
13	Rational proteomics I. Fingerprint identification and cofactor specificity in the short-chain oxidoreductase (SCOR) enzyme family. Proteins: Structure, Function and Bioinformatics, 2003, 53, 931-943.	2.6	53
14	A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Research, 2003, 31, 1821-1829.	14.5	254
15	KP4 fungal toxin inhibits growth in Ustilago maydis by blocking calcium uptake. Molecular Microbiology, 2002, 41, 775-785.	2.5	57
16	The H1 double-stranded RNA genome of Ustilago maydis virus-H1 encodes a polyprotein that contains structural motifs for capsid polypeptide, papain-like protease, and RNA-dependent RNA polymerase. Virus Research, 2001, 76, 183-189.	2.2	32
17	Isolation of Rat Dihydrofolate Reductase Gene and Characterization of Recombinant Enzyme. Antimicrobial Agents and Chemotherapy, 2001, 45, 2517-2523.	3.2	17
18	The Double-Stranded RNA Viruses of Ustilago Maydis and Their Killer Toxins. , 2001, , 109-124.		6

#	Article	lF	CITATIONS
19	Liposomes as formulation excipients for protein pharmaceuticals: a model protein study. Pharmaceutical Research, 2000, 17, 344-350.	3.5	17
20	Kinetics of Ribosomal Pausing during Programmed \hat{a} Translational Frameshifting. Molecular and Cellular Biology, 2000, 20, 1095-1103.	2.3	106
21	Salivary Histatin 5 and Human Neutrophil Defensin 1 Kill <i>Candida albicans</i> via Shared Pathways. Antimicrobial Agents and Chemotherapy, 2000, 44, 3310-3316.	3.2	99
22	Novel Methods of Introducing Pest and Disease Resistance to Crop Plants. , 2000, 22, 11-22.		1
23	Viruses of Fungi and Protozoans: Is Everyone Sick?. , 2000, , 297-317.		5
24	Structure of Ustilago maydis Killer Toxin KP6 α-Subunit. Journal of Biological Chemistry, 1999, 274, 20425-20431.	3.4	29
25	TOTIVIRUSES(TOTIVIRIDAE) Ustilago Maydis Viruses. , 1999, , 1812-1817.		2
26	Functions of Conserved Motifs in the RNA-Dependent RNA Polymerase of a Yeast Double-Stranded RNA Virus. Journal of Virology, 1998, 72, 4427-4429.	3.4	45
27	A Second Double-Stranded RNA Virus from Yeast. Virology, 1996, 216, 451-454.	2.4	49
28	High-level secretion of a virally encoded anti-fungal toxin in transgenic tobacco plants. Plant Molecular Biology, 1996, 30, 359-366.	3.9	34
29	The Ustilago maydis virally encoded KP1 killer toxin. Molecular Microbiology, 1996, 20, 957-963.	2.5	39
30	Interference with Replication of Two Double-Stranded RNA Viruses by Production of N-Terminal Fragments of Capsid Polypeptides. Virology, 1995, 214, 215-221.	2.4	15
31	Processing and Secretion of a Virally Encoded Antifungal Toxin in Transgenic Tobacco Plants: Evidence for a Kex2p Pathway in Plants. Plant Cell, 1995, 7, 677.	6.6	0
32	Structure and heterologous expression of the Ustilago maydis viral toxin KP4. Molecular Microbiology, 1994, 11, 155-164.	2.5	59
33	Mutants of Ustilago maydis defective in production of one of two polypeptides of KP6 toxin from the preprotoxin. Molecular Genetics and Genomics, 1993, 238-238, 234-240.	2.4	8
34	RNA Structural Requirements for RNA Binding, Replication, and Packaging in the Yeast Double-Stranded RNA Virus. Virology, 1993, 195, 481-491.	2.4	24
35	A family of Ustilago maydis expression vectors: new selectable markers and promoters. Gene, 1993, 127, 151-152.	2.2	18
36	A closely related group of RNA-dependent RNA polymerases from double-stranded RNA viruses. Nucleic Acids Research, 1993, 21, 5667-5669.	14.5	212

#	Article	IF	Citations
37	Immunity and resistance to the KP6 toxin of Ustilago maydis. Molecular Genetics and Genomics, 1992, 233, 395-403.	2.4	17
38	DNA fingerprints of a gorgonian coral: a method for detecting clonal structure in a vegetative species. Marine Biology, 1992, 114, 317-325.	1.5	145
39	An expression vector for the phytopathogenic fungus, Ustilago maydis. Gene, 1991, 98, 129-134.	2.2	40
40	Relationships among the positive strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases. Nucleic Acids Research, 1991, 19, 217-226.	14.5	219
41	A very small viral double-stranded RNA. Virus Genes, 1989, 2, 195-206.	1.6	17
42	Construction of full-length cDNA copies of viral double-stranded RNA. Virus Genes, 1988, 1, 243-253.	1.6	14
43	Long internal inverted repeat in a yeast viral double-stranded RNA. Nucleic Acids Research, 1985, 13, 1575-1591.	14.5	10
44	The capsid polypeptides of the yeast viruses. Biochemical and Biophysical Research Communications, 1984, 121, 619-625.	2.1	15
45	TwoUstilago maydisviral dsRNAs of differentsizecode for the same product. Nucleic Acids Research, 1983, 11, 2765-2778.	14.5	39
46	Cloning of cDNA to a yeast viral double-stranded RNA and comparison of three viral RNAs. Gene, 1982, 19, 225-230.	2.2	22
47	There are at least two yeast viral double-stranded RNAs of the same size: An explanation for viral exclusion. Cell, 1982, 31, 193-200.	28.9	47
48	Sequences at the 3′ ends of yeast viral dsRNAs: proposed transcriptase and replicase initiation sites. Nucleic Acids Research, 1981, 9, 4007-4021.	14.5	40
49	Yeast dsRNA viral transcriptase pause products: identification of the transcript strand. Nucleic Acids Research, 1981, 9, 5049-5060.	14.5	24
50	Yeast viral RNA polymerase is a transcriptase. Nucleic Acids Research, 1980, 8, 2985-2998.	14.5	88
51	Yeast viral double-stranded RNAs have heterogeneous 3′ termini. Cell, 1980, 19, 923-933.	28.9	77
52	Synthesis of two lac repressor polypeptides in a mutant of Escherichia coli that has a new promoter for the lac operon mapping within the i gene. Journal of Molecular Biology, 1977, 110, 255-267.	4.2	1
53	The molecular biology of yeast killer factor. International Journal of Biochemistry & Cell Biology, 1976, 7, 173-179.	0.5	19
54	Genetic mapping of a new promoter for the lac operon. Journal of Molecular Biology, 1975, 93, 311-317.	4.2	3

#	Article	IF	CITATIONS
55	Characterization of a recessive-lethal amber suppressor strain of Salmonella typhimurium by in vitro synthesis of T4 lysozyme. Nucleic Acids and Protein Synthesis, 1972, 269, 162-169.	1.7	1
56	New species of tyrosine tRNA in nonsense suppressor strains of yeast. Nucleic Acids and Protein Synthesis, 1972, 287, 68-76.	1.7	14
57	The Ustilago maydis killer toxins. Topics in Current Genetics, 0, , 157-174.	0.7	5