
Jesus A Garrido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/788966/publications.pdf Version: 2024-02-01

LESUS & CARRIDO

#	Article	IF	CITATIONS
1	Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience, 2009, 162, 805-815.	2.3	114
2	Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning. Cerebellum, 2016, 15, 139-151.	2.5	74
3	Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing Issue. Frontiers in Cellular Neuroscience, 2016, 10, 176.	3.7	72
4	ADAPTIVE CEREBELLAR SPIKING MODEL EMBEDDED IN THE CONTROL LOOP: CONTEXT SWITCHING AND ROBUSTNESS AGAINST NOISE. International Journal of Neural Systems, 2011, 21, 385-401.	5.2	70
5	Adaptive Robotic Control Driven by a Versatile Spiking Cerebellar Network. PLoS ONE, 2014, 9, e112265.	2.5	70
6	Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation. Frontiers in Neural Circuits, 2013, 7, 159.	2.8	64
7	Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks. Frontiers in Computational Neuroscience, 2015, 9, 24.	2.1	64
8	Musculoskeletal Robots: Scalability in Neural Control. IEEE Robotics and Automation Magazine, 2016, 23, 128-137.	2.0	51
9	Realistic modeling of neurons and networks: towards brain simulation. Functional Neurology, 2013, 28, 153-66.	1.3	48
10	Spiking Neural Network With Distributed Plasticity Reproduces Cerebellar Learning in Eye Blink Conditioning Paradigms. IEEE Transactions on Biomedical Engineering, 2016, 63, 210-219.	4.2	47
11	A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing: A Case Study. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26, 1567-1574.	11.3	46
12	Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit. Frontiers in Cellular Neuroscience, 2015, 9, 169.	3.7	45
13	Spike Timing Regulation on the Millisecond Scale by Distributed Synaptic Plasticity at the Cerebellum Input Stage: A Simulation Study. Frontiers in Computational Neuroscience, 2013, 7, 64.	2.1	42
14	A closed-loop neurobotic system for fine touch sensing. Journal of Neural Engineering, 2013, 10, 046019.	3.5	40
15	Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation. Frontiers in Computational Neuroscience, 2014, 8, 97.	2.1	39
16	Cerebellarlike Corrective Model Inference Engine for Manipulation Tasks. IEEE Transactions on Systems, Man, and Cybernetics, 2011, 41, 1299-1312.	5.0	38
17	Distributed Cerebellar Motor Learning: A Spike-Timing-Dependent Plasticity Model. Frontiers in Computational Neuroscience, 2016, 10, 17.	2.1	37
18	Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks. International Journal of Neural Systems, 2016, 26, 1650020.	5.2	36

JESUS A GARRIDO

#	Article	IF	CITATIONS
19	Cerebellar Input Configuration Toward Object Model Abstraction in Manipulation Tasks. IEEE Transactions on Neural Networks, 2011, 22, 1321-1328.	4.2	34
20	ADAPTIVE AND PREDICTIVE CONTROL OF A SIMULATED ROBOT ARM. International Journal of Neural Systems, 2013, 23, 1350010.	5.2	31
21	Bio-inspired adaptive feedback error learning architecture for motor control. Biological Cybernetics, 2012, 106, 507-522.	1.3	28
22	FROM SENSORS TO SPIKES: EVOLVING RECEPTIVE FIELDS TO ENHANCE SENSORIMOTOR INFORMATION IN A ROBOT-ARM. International Journal of Neural Systems, 2012, 22, 1250013.	5.2	24
23	Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks. Frontiers in Neuroinformatics, 2017, 11, 7.	2.5	23
24	On Robot Compliance: A Cerebellar Control Approach. IEEE Transactions on Cybernetics, 2021, 51, 2476-2489.	9.5	23
25	Integrated neural and robotic simulations. Simulation of cerebellar neurobiological substrate for an object-oriented dynamic model abstraction process. Robotics and Autonomous Systems, 2014, 62, 1702-1716.	5.1	13
26	Event and Time Driven Hybrid Simulation of Spiking Neural Networks. Lecture Notes in Computer Science, 2011, , 554-561.	1.3	9
27	Spiking cerebellar model with multiple plasticity sites reproduces eye blinking classical conditioning. , 2015, , .		9
28	Simulation, visualization and analysis tools for pattern recognition assessment with spiking neuronal networks. Neurocomputing, 2020, 400, 309-321.	5.9	6
29	Distributed cerebellar plasticity implements multiple-scale memory components of Vestibulo-Ocular Reflex in real-robots. , 2014, , .		5
30	Optimization of Efficient Neuron Models With Realistic Firing Dynamics. The Case of the Cerebellar Granule Cell. Frontiers in Cellular Neuroscience, 2020, 14, 161.	3.7	5
31	On the Use of a Multimodal Optimizer for Fitting Neuron Models. Application to the Cerebellar Granule Cell. Frontiers in Neuroinformatics, 2021, 15, 663797.	2.5	3
32	Distributed synaptic plasticity controls spike-timing: predictions from a cerebellar computational model. BMC Neuroscience, 2013, 14, .	1.9	2
33	A Basal Ganglia Computational Model to Explain the Paradoxical Sensorial Improvement in the Presence of Huntington's Disease. International Journal of Neural Systems, 2020, 30, 2050057.	5.2	2
34	CPU-GPU hybrid platform for efficient spiking neural-network simulation. BMC Neuroscience, 2013, 14, .	1.9	1
35	Exploring Vestibulo-Ocular Adaptation in a Closed-Loop Neuro-Robotic Experiment Using STDP. A Simulation Study. , 2018, , .		1
36	Context Separability Mediated by the Granular Layer in a Spiking Cerebellum Model for Robot Control. Lecture Notes in Computer Science, 2011, , 537-546.	1.3	0

#	Article	IF	CITATIONS
37	Active tactile sensing in a neurorobotic Braille-reading system. , 2012, , .		ο