Kazushige Ogawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7889320/publications.pdf

Version: 2024-02-01

687363 395702 1,064 31 13 33 citations g-index h-index papers 39 39 39 1097 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Testicular Macrophages Produce Progesterone De Novo Promoted by cAMP and Inhibited by M1 Polarization Inducers. Biomedicines, 2022, 10, 487.	3.2	5
2	Expression and localisation of ephrin-B1 and EphB4 in steroidogenic cells in the naturally cycling mouse ovary. Reproductive Biology, 2021, 21, 100511.	1.9	3
3	Cell Properties of Lung Tissue-Resident Macrophages Propagated by Co-Culture with Lung Fibroblastic Cells from C57BL/6 and BALB/c Mice. Biomedicines, 2021, 9, 1241.	3.2	3
4	Expression and localisation of ephrin-B1, EphB2, and EphB4 in the mouse testis during postnatal development. Reproductive Biology, 2020, 20, 321-332.	1.9	4
5	Simple propagation method for resident macrophages by co-culture and subculture, and their isolation from various organs. BMC Immunology, 2019, 20, 34.	2.2	14
6	Compartments with predominant ephrinâ∈B1 and EphB2/B4 expression are present alternately along the excurrent duct system in the adult mouse testis and epididymis. Andrology, 2019, 7, 888-901.	3.5	8
7	Truncated EphA2 likely potentiates cell adhesion via integrins as well as infiltration and/or lodgment of a monocyte/macrophage cell line in the red pulp and marginal zone of the mouse spleen, where ephrin-A1 is prominently expressed in the vasculature. Histochemistry and Cell Biology, 2017, 147, 317-339.	1.7	7
8	EphA receptors and ephrin-A ligands are upregulated by monocytic differentiation/maturation and promote cell adhesion and protrusion formation in HL60 monocytes. BMC Cell Biology, 2017, 18, 28.	3.0	21
9	EphA2 promotes cell adhesion and spreading of monocyte and monocyte/macrophage cell lines on integrin ligand-coated surfaces. Cell Adhesion and Migration, 2015, 9, 469-482.	2.7	16
10	Aberrant EphB/ephrin-B expression in experimental gastric lesions and tumor cells. World Journal of Gastroenterology, 2015, 21, 453.	3.3	8
11	Complementary expression and repulsive signaling suggest that EphB2 and ephrin-B1 are possibly involved in epithelial boundary formation at the squamocolumnar junction in the rodent stomach. Histochemistry and Cell Biology, 2013, 140, 659-675.	1.7	12
12	Complementary expression of EphB receptors and ephrin-B ligand in the pyloric and duodenal epithelium of adult mice. Histochemistry and Cell Biology, 2011, 136, 345-356.	1.7	9
13	Complementary expression and repulsive signaling suggest that EphB receptors and ephrin-B ligands control cell positioning in the gastric epithelium. Histochemistry and Cell Biology, 2011, 136, 617-636.	1.7	11
14	EphB signaling inhibits gap junctional intercellular communication and synchronized contraction in cultured cardiomyocytes. Basic Research in Cardiology, 2011, 106, 1057-1068.	5.9	21
15	Effective and Steady Differentiation of a Clonal Derivative of P19CL6 Embryonal Carcinoma Cell Line into Beating Cardiomyocytes. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-12.	3.0	14
16	EphB2 and ephrin-B1 expressed in the adult kidney regulate the cytoarchitecture of medullary tubule cells through Rho family GTPases. Journal of Cell Science, 2006, 119, 559-570.	2.0	52
17	Reversible formation of giant and normal-sized mitochondria in gastric parietal cells of guinea pigs. The Anatomical Record, 2004, 278A, 533-539.	1.8	5
18	Starvation induces the formation of giant mitochondria in gastric parietal cells of guinea pigs. Journal of Electron Microscopy, 2003, 52, 217-225.	0.9	12

#	Article	IF	CITATIONS
19	A sulphur matrix complex, elastic fibril composed of a fine core of amorphous elastin and microfibrils was largely accumulated in the aortic intima of aged rats. Journal of Electron Microscopy, 2003, 52, 175-182.	0.9	O
20	Histamine Increased the Uptake of Rhodamine 123 in Mitochondria of Living Parietal Cells in Cultured Gastric Glands from Starved Guinea Pigs. Acta Histochemica Et Cytochemica, 2003, 36, 255-262.	1.6	3
21	Caveolar and intercellular channels provide major transport pathways of macromolecules across vascular endothelial cells. The Anatomical Record, 2001, 264, 32-42.	1.8	15
22	The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene, 2000, 19, 6043-6052.	5.9	336
23	Immunoreactivity of protein gene product 9.5 (PGP 9.5) in the developing hamster olfactory bulb. The Anatomical Record, 1998, 250, 238-244.	1.8	20
24	Immunohistochemical and enzyme-histochemical study on the accessory olfactory bulb of the dog. The Anatomical Record, 1998, 252, 393-402.	1.8	25
25	Lectin-Binding Patterns in the Olfactory Epithelium and Vomeronasal Organ of the Common Marmoset Journal of Veterinary Medical Science, 1998, 60, 1005-1011.	0.9	28
26	Immunoreactivity of protein gene product 9.5 (PGP 9.5) in the developing hamster olfactory bulb. The Anatomical Record, 1998, 250, 238-244.	1.8	4
27	Immunohistochemical studies on the development of the hypothalamo-hyophysial system inXenopus laevis. The Anatomical Record, 1995, 241, 244-254.	1.8	22
28	Exocytosis of secretory granules in the juxtaglomerular granular cells of kidneys. The Anatomical Record, 1995, 243, 336-346.	1.8	14
29	Transport pathways for macromolecules in the aortic endothelium: I. Transendothelial channels revealed by three-dimensional reconstruction using serial sections. The Anatomical Record, 1993, 236, 653-663.	1.8	10
30	Transport pathways for macromolecules in the aortic endothelium. II. The distribution analysis of plasmalemmal vesicles reconstructed by serial sections. The Anatomical Record, 1993, 237, 358-364.	1.8	6
31	Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae Journal of Cell Biology, 1992, 119, 1507-1513.	5.2	335