
Laura E Jonkman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7889068/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study. Brain, 2016, 139, 1472-1481.	7.6	133
2	Cortical pathology in multiple sclerosis detected by the <scp>T</scp> 1/ <scp>T</scp> 2â€weighted ratio from routine magnetic resonance imaging. Annals of Neurology, 2017, 82, 519-529.	5.3	102
3	Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study. Brain, 2016, 139, 795-806.	7.6	76
4	Axonal degeneration as substrate of fractional anisotropy abnormalities in multiple sclerosis cortex. Brain, 2019, 142, 1921-1937.	7.6	38
5	High-resolution T1-relaxation time mapping displays subtle, clinically relevant, gray matter damage in long-standing multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1279-1288.	3.0	35
6	The substrate of increased cortical FA in MS: A 7T post-mortem MRI and histopathology study. Multiple Sclerosis Journal, 2016, 22, 1804-1811.	3.0	30
7	7T MRI allows detection of disturbed cortical lamination of the medial temporal lobe in patients with Alzheimer's disease. Neurolmage: Clinical, 2019, 21, 101665.	2.7	28
8	Can MS lesion stages be distinguished with MRI? A postmortem MRI and histopathology study. Journal of Neurology, 2015, 262, 1074-1080.	3.6	27
9	Normal Aging Brain Collection Amsterdam (NABCA): A comprehensive collection of postmortem high-field imaging, neuropathological and morphometric datasets of non-neurological controls. NeuroImage: Clinical, 2019, 22, 101698.	2.7	25
10	Ultra-high field MTR and qR2* differentiates subpial cortical lesions from normal-appearing gray matter in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1306-1314.	3.0	24
11	Post-Mortem MRI and Histopathology in Neurologic Disease: A Translational Approach. Neuroscience Bulletin, 2019, 35, 229-243.	2.9	18
12	Gray Matter Correlates of Cognitive Performance Differ between Relapsing-Remitting and Primary-Progressive Multiple Sclerosis. PLoS ONE, 2015, 10, e0129380.	2.5	17
13	Multi-scale MRI spectrum detects differences in myelin integrity between MS lesion types. Multiple Sclerosis Journal, 2016, 22, 1569-1577.	3.0	17
14	Can post-mortem MRI be used as a proxy for in vivo? A case study. Brain Communications, 2019, 1, fcz030.	3.3	17
15	Relationship between β-amyloid and structural network topology in decedents without dementia. Neurology, 2020, 95, e532-e544.	1.1	17
16	Structural (dys)connectivity associates with cholinergic cell density in Alzheimer's disease. Brain, 2022, 145, 2869-2881.	7.6	15
17	Evaluation of the diffusion MRI white matter tract integrity model using myelin histology and Monte-Carlo simulations. NeuroImage, 2020, 223, 117313.	4.2	14
18	Cortical axonal loss is associated with both gray matter demyelination and white matter tract pathology in progressive multiple sclerosis: Evidence from a combined MRI-histopathology study. Multiple Sclerosis Journal, 2021, 27, 380-390.	3.0	13

Laura E Jonkman

#	Article	IF	CITATIONS
19	Amyloid-β, p-tau and reactive microglia are pathological correlates of MRI cortical atrophy in Alzheimer's disease. Brain Communications, 2021, 3, fcab281.	3.3	12
20	Artificial double inversion recovery images for (juxta)cortical lesion visualization in multiple sclerosis Journal, 2021, , 135245852110298.	3.0	11
21	Texture analysis in brain T2 and diffusion MRI differentiates histology-verified grey and white matter pathology types in multiple sclerosis. Journal of Neuroscience Methods, 2022, 379, 109671.	2.5	5
22	Artificial double inversion recovery images can substitute conventionally acquired images: an MRI-histology study. Scientific Reports, 2022, 12, 2620.	3.3	4
23	Postmortem magnetic resonance imaging. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 150, 335-354.	1.8	3
24	Ultra-high-field (7.0 Tesla and above) MRI is now necessary to make the next step forward in understanding MS pathophysiology – NO. Multiple Sclerosis Journal, 2017, 23, 374-375.	3.0	0
25	P1â€478: LOWER STRUCTURAL DEGREE AND HIGHER LOCAL EFFICIENCY RELATED TO DIFFUSE AMYLOIDâ€BETA LOAD IN CORTEX OF NONâ€NEUROLOGICAL AGED DONORS. Alzheimer's and Dementia, 2018, 14, P508.	0.8	0
26	ICâ€₽â€122: THE NORMAL AGING BRAIN COLLECTION AMSTERDAM (NABCA): A COMPREHENSIVE COLLECTION O POSTMORTEM IMAGING, NEUROPATHOLOGICAL AND MORPHOMETRIC DATASETS. Alzheimer's and Dementia, 2018, 14, P103.	OF 0.8	0
27	ICâ€Pâ€053: LOWER STRUCTURAL DEGREE AND HIGHER LOCAL EFFICIENCY RELATED TO DIFFUSE AMYLOIDâ€BE LOAD IN CORTEX OF NONâ€NEUROLOGICAL AGED DONORS. Alzheimer's and Dementia, 2018, 14, P51.	ТА 0.8	0
28	P2â€477: THE NORMAL AGING BRAIN COLLECTION AMSTERDAM (NABCA): A COMPREHENSIVE COLLECTION OF POSTMORTEM IMAGING, NEUROPATHOLOGICAL AND MORPHOMETRIC DATASETS. Alzheimer's and Dementia, 2018, 14, P907.	0.8	0