William F Martin

List of Publications by Citations

Source: https://exaly.com/author-pdf/7888723/william-f-martin-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28,923 82 163 312 g-index h-index citations papers 33,038 10 345 7.53 L-index ext. citations ext. papers avg, IF

#	Paper	IF	Citations
312	Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. <i>Nature Reviews Genetics</i> , 2004 , 5, 123-35	30.1	1028
311	The hydrogen hypothesis for the first eukaryote. <i>Nature</i> , 1998 , 392, 37-41	50.4	992
310	Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 12246-51	11.5	947
309	Hydrothermal vents and the origin of life. <i>Nature Reviews Microbiology</i> , 2008 , 6, 805-14	22.2	833
308	The energetics of genome complexity. <i>Nature</i> , 2010 , 467, 929-34	50.4	741
307	Eukaryotic evolution, changes and challenges. <i>Nature</i> , 2006 , 440, 623-30	50.4	730
306	Gene transfer to the nucleus and the evolution of chloroplasts. <i>Nature</i> , 1998 , 393, 162-5	50.4	638
305	Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. <i>PLoS Biology</i> , 2004 , 2, E69	9.7	613
304	Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 13172-7	11.5	606
303	Gene transfer from organelles to the nucleus: how much, what happens, and Why?. <i>Plant Physiology</i> , 1998 , 118, 9-17	6.6	556
302	Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. <i>Trends in Genetics</i> , 2004 , 20, 80-6	8.5	533
301	On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2003 , 358, 59-83; discussion 83-5	5.8	533
300	Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. <i>Microbiology and Molecular Biology Reviews</i> , 2012 , 76, 444-95	13.2	496
299	The physiology and habitat of the last universal common ancestor. <i>Nature Microbiology</i> , 2016 , 1, 16116	26.6	482
298	Genetics and geography of wild cereal domestication in the near east. <i>Nature Reviews Genetics</i> , 2002 , 3, 429-41	30.1	473
297	On the origin of biochemistry at an alkaline hydrothermal vent. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2007 , 362, 1887-925	5.8	455
296	Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. <i>PLoS Genetics</i> , 2010 , 6, e1000834	6	389

295	Introns and the origin of nucleus-cytosol compartmentalization. <i>Nature</i> , 2006 , 440, 41-5	50.4	385
294	Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11740-5	11.5	314
293	The rocky roots of the acetyl-CoA pathway. <i>Trends in Biochemical Sciences</i> , 2004 , 29, 358-63	10.3	287
292	Mitochondria as we don't know them. <i>Trends in Biochemical Sciences</i> , 2002 , 27, 564-72	10.3	286
291	Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 10039-44	11.5	285
290	On the origin of genomes and cells within inorganic compartments. <i>Trends in Genetics</i> , 2005 , 21, 647-54	8.5	284
289	Serpentinization as a source of energy at the origin of life. <i>Geobiology</i> , 2010 , 8, 355-71	4.3	281
288	A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. <i>Molecular Biology and Evolution</i> , 2004 , 21, 1643-60	8.3	277
287	Endosymbiotic theories for eukaryote origin. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2015 , 370, 20140330	5.8	274
286	The tree of one percent. <i>Genome Biology</i> , 2006 , 7, 118	18.3	255
285	The origin of membrane bioenergetics. <i>Cell</i> , 2012 , 151, 1406-16	56.2	241
284	Endosymbiotic theory for organelle origins. <i>Current Opinion in Microbiology</i> , 2014 , 22, 38-48	7.9	227
283	The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. <i>Current Genetics</i> , 1997 , 32, 1-18	2.9	224
282	Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1997 , 94, 2415-20	11.5	215
281	How did LUCA make a living? Chemiosmosis in the origin of life. <i>BioEssays</i> , 2010 , 32, 271-80	4.1	203
2 80	Why have organelles retained genomes?. <i>Trends in Genetics</i> , 1999 , 15, 364-70	8.5	202
279	Endosymbiotic origin and differential loss of eukaryotic genes. <i>Nature</i> , 2015 , 524, 427-32	50.4	190
278	Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. <i>BioEssays</i> , 1999 , 21, 99-104	4.1	186

277	Genomes of Stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. <i>Genome Biology and Evolution</i> , 2013 , 5, 31-44	3.9	182
276	Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 20537-42	11.5	180
275	Gene transfer from organelles to the nucleus: frequent and in big chunks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 8612-4	11.5	177
274	Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. <i>Molecular Biology and Evolution</i> , 2008 , 25, 748-61	8.3	176
273	Molecular evidence for pre-Cretaceous angiosperm origins. <i>Nature</i> , 1989 , 339, 46-48	50.4	174
272	Origins of major archaeal clades correspond to gene acquisitions from bacteria. <i>Nature</i> , 2015 , 517, 77-8	8 0 50.4	169
271	Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. <i>Genome Research</i> , 2011 , 21, 599-609	9.7	168
270	Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. <i>Nature Reviews Drug Discovery</i> , 2020 , 19, 609-633	64.1	166
269	Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 870-5	11.5	165
268	Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 11903-8	11.5	164
267	Early bioenergetic evolution. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2013 , 368, 20130088	5.8	162
266	Prokaryotic evolution and the tree of life are two different things. <i>Biology Direct</i> , 2009 , 4, 34	7.2	161
265	Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1993 , 90, 8692-6	11.5	161
264	A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1995 , 92, 9122-6	11.5	159
263	Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA. <i>Journal of Molecular Evolution</i> , 2000 , 50, 348-58	3.1	157
262	Single eubacterial origin of eukaryotic sulfide:quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times. <i>Molecular Biology and Evolution</i> , 2003 , 20, 1564-74	8.3	155
261	An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. <i>Biological Chemistry</i> , 2001 , 382, 1521-39	4.5	152
260	A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Molecular Biology and Evolution, 2009, 26, 1533-48	8.3	151

259	Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. <i>Molecular Biology and Evolution</i> , 2007 , 24, 217-27	8.3	149
258	Evolutionary origins of metabolic compartmentalization in eukaryotes. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2010 , 365, 847-55	5.8	142
257	Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms. <i>Molecular Biology and Evolution</i> , 1996 , 13, 383-96	8.3	134
256	Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 12944-8	11.5	130
255	Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (Einkorn) domestication: implications for the origin of agriculture. <i>Molecular Biology and Evolution</i> , 2007 , 24, 2657-68	8.3	128
254	Enzymatic Evidence for a Complete Oxidative Pentose Phosphate Pathway in Chloroplasts and an Incomplete Pathway in the Cytosol of Spinach Leaves. <i>Plant Physiology</i> , 1995 , 108, 609-614	6.6	121
253	Prokaryotic features of a nucleus-encoded enzyme. cDNA sequences for chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases from mustard (Sinapis alba). <i>FEBS Journal</i> , 1986 , 159, 323-	-31	119
252	Annotated English translation of Mereschkowsky's 1905 paper B er Natur und Ursprung der Chromatophoren imPflanzenreichell <i>European Journal of Phycology</i> , 1999 , 34, 287-295	2.2	117
251	Pyruvate formate-lyase and a novel route of eukaryotic ATP synthesis in Chlamydomonas mitochondria. <i>Journal of Biological Chemistry</i> , 2006 , 281, 9909-18	5.4	113
250	Pyruvate: NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. <i>Molecular Biology and Evolution</i> , 2001 , 18, 710-20	8.3	113
249	Endosymbiotic origin and codon bias of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. <i>Journal of Molecular Evolution</i> , 1987 , 26, 320-8	3.1	113
248	Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths. <i>Molecular Biology and Evolution</i> , 2011 , 28, 1057-74	8.3	112
247	Mutational decay and age of chloroplast and mitochondrial genomes transferred recently to angiosperm nuclear chromosomes. <i>Plant Physiology</i> , 2005 , 138, 1723-33	6.6	112
246	Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants. A case study of endosymbiotic gene transfer. <i>FEBS Journal</i> , 2002 , 269, 868-83		110
245	Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway. <i>Molecular Biology and Evolution</i> , 2000 , 17, 213-23	8.3	110
244	How many genes in Arabidopsis come from cyanobacteria? An estimate from 386 protein phylogenies. <i>Trends in Genetics</i> , 2001 , 17, 113-20	8.5	108
243	Five identical intron positions in ancient duplicated genes of eubacterial origin. <i>Nature</i> , 1994 , 367, 387-9	950.4	107
242	Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobranchus ocellatus does not entail lateral transfer of algal nuclear genes. Molecular Biology and Evolution, 2011 , 28, 699-706	8.3	106

241	Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrane System. <i>Trends in Microbiology</i> , 2016 , 24, 525-534	12.4	106
240	An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. <i>Genome Biology and Evolution</i> , 2012 , 4, 466-85	3.9	104
239	The Entner-Doudoroff pathway is an overlooked glycolytic route in cyanobacteria and plants. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 5441-6	11.5	102
238	Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. <i>Molecular Genetics and Genomics</i> , 2006 , 276, 230-41	3.1	98
237	Evolution. Energy at life's origin. <i>Science</i> , 2014 , 344, 1092-3	33.3	93
236	How do mitochondrial genes get into the nucleus?. <i>Trends in Genetics</i> , 2001 , 17, 383-7	8.5	88
235	Acetate formation in the energy metabolism of parasitic helminths and protists. <i>International Journal for Parasitology</i> , 2010 , 40, 387-97	4.3	85
234	Molecular phylogenies of plastid origins and algal evolution. <i>Journal of Molecular Evolution</i> , 1992 , 35, 385-404	3.1	85
233	On the Origin of Heterotrophy. <i>Trends in Microbiology</i> , 2016 , 24, 12-25	12.4	84
232	Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. <i>IUBMB Life</i> , 2003 , 55, 193-204	4.7	81
231	Structure, evolution and anaerobic regulation of a nuclear gene encoding cytosolic glyceraldehyde-3-phosphate dehydrogenase from maize. <i>Journal of Molecular Biology</i> , 1989 , 208, 551-6.	5 6.5	81
230	Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation. <i>FEBS Letters</i> , 2012 , 586, 485-93	3.8	80
229	Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 10139-46	11.5	78
228	Evolutionary analysis of 58 proteins encoded in six completely sequenced chloroplast genomes: Revised molecular estimates of two seed plant divergence times. <i>Plant Systematics and Evolution</i> , 1997 , 206, 337-351	1.3	77
227	The difference between organelles and endosymbionts. <i>Current Biology</i> , 2006 , 16, R1016-7; author reply R1017-8	6.3	77
226	Intron conservation across the prokaryote-eukaryote boundary: structure of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1988 , 85, 2672-6	11.5	76
225	Lokiarchaeon is hydrogen dependent. <i>Nature Microbiology</i> , 2016 , 1, 16034	26.6	75
224	Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2013 , 1827, 210-23	4.6	75

223	AstRoMap European Astrobiology Roadmap. <i>Astrobiology</i> , 2016 , 16, 201-43	3.7	75
222	Too Much Eukaryote LGT. <i>BioEssays</i> , 2017 , 39, 1700115	4.1	74
221	The origin of mitochondria in light of a fluid prokaryotic chromosome model. <i>Biology Letters</i> , 2007 , 3, 180-4	3.6	74
220	Planctomycetes and eukaryotes: a case of analogy not homology. <i>BioEssays</i> , 2011 , 33, 810-7	4.1	73
219	Chloroplast genome phylogenetics: why we need independent approaches to plant molecular evolution. <i>Trends in Plant Science</i> , 2005 , 10, 203-9	13.1	73
218	Purification and cDNA cloning of anthranilate synthase from Ruta graveolens: modes of expression and properties of native and recombinant enzymes. <i>Plant Journal</i> , 1995 , 7, 491-501	6.9	73
217	Red and problematic green phylogenetic signals among thousands of nuclear genes from the photosynthetic and apicomplexa-related Chromera velia. <i>Genome Biology and Evolution</i> , 2011 , 3, 1220-3	8 ∂ .9	71
216	Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. <i>Journal of Biological Chemistry</i> , 2005 , 280, 4329-38	5.4	71
215	Protein import and the origin of red complex plastids. <i>Current Biology</i> , 2015 , 25, R515-21	6.3	70
214	Genome networks root the tree of life between prokaryotic domains. <i>Genome Biology and Evolution</i> , 2010 , 2, 379-92	3.9	70
213	Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes. <i>Genome Biology and Evolution</i> , 2013 , 5, 2318-29	3.9	69
212	Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2008 , 363, 2717-29	5.8	69
211	Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. <i>Current Opinion in Microbiology</i> , 2005 , 8, 630-7	7.9	69
2 10	Higher-plant chloroplast and cytosolic fructose-1,6-bisphosphatase isoenzymes: origins via duplication rather than prokaryote-eukaryote divergence. <i>Plant Molecular Biology</i> , 1996 , 32, 485-91	4.6	69
209	Euglena gracilis rhodoquinone:ubiquinone ratio and mitochondrial proteome differ under aerobic and anaerobic conditions. <i>Journal of Biological Chemistry</i> , 2004 , 279, 22422-9	5.4	68
208	Automated glycopeptide analysisreview of current state and future directions. <i>Briefings in Bioinformatics</i> , 2013 , 14, 361-74	13.4	67
207	Functional studies of chloroplast glyceraldehyde-3-phosphate dehydrogenase subunits A and B expressed in Escherichia coli: formation of highly active A4 and B4 homotetramers and evidence that aggregation of the B4 complex is mediated by the B subunit carboxy terminus. <i>Plant Molecular</i>	4.6	66
206	Biology, 1996, 32, 505-13 A natural barrier to lateral gene transfer from prokaryotes to eukaryotes revealed from genomes: the 70½ rule. BMC Biology, 2016, 14, 89	7.3	66

205	A physiological perspective on the origin and evolution of photosynthesis. <i>FEMS Microbiology Reviews</i> , 2018 , 42, 205-231	15.1	65
204	Sulfide: quinone oxidoreductase (SQR) from the lugworm Arenicola marina shows cyanide- and thioredoxin-dependent activity. <i>FEBS Journal</i> , 2008 , 275, 1131-9	5.7	64
203	Enolase from Trypanosoma brucei, from the amitochondriate protist Mastigamoeba balamuthi, and from the chloroplast and cytosol of Euglena gracilis: pieces in the evolutionary puzzle of the eukaryotic glycolytic pathway. <i>Molecular Biology and Evolution</i> , 2000 , 17, 989-1000	8.3	63
202	Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. <i>International Journal for Parasitology</i> , 2013 , 43, 707-19	4.3	62
201	Getting a better picture of microbial evolution en route to a network of genomes. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2009 , 364, 2187-96	5.8	62
200	The Physiology of Phagocytosis in the Context of Mitochondrial Origin. <i>Microbiology and Molecular Biology Reviews</i> , 2017 , 81,	13.2	61
199	The last universal common ancestor between ancient Earth chemistry and the onset of genetics. <i>PLoS Genetics</i> , 2018 , 14, e1007518	6	61
198	Anthranilate synthase from Ruta graveolens. Duplicated AS alpha genes encode tryptophan-sensitive and tryptophan-insensitive isoenzymes specific to amino acid and alkaloid biosynthesis. <i>Plant Physiology</i> , 1996 , 111, 507-14	6.6	61
197	The evolutionary root of flowering plants. Systematic Biology, 2013, 62, 50-61	8.4	60
196	Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2014 , 1837, 964-81	4.6	60
195	Secondary loss of chloroplasts in trypanosomes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 765-7	11.5	60
194	Evidence for nucleomorph to host nucleus gene transfer: light-harvesting complex proteins from cryptomonads and chlorarachniophytes. <i>Protist</i> , 2000 , 151, 239-52	2.5	60
193	Origins of hydrogenosomes and mitochondria. Current Opinion in Microbiology, 2000, 3, 481-6	7.9	60
192	The genome of Rickettsia prowazekii and some thoughts on the origin of mitochondria and hydrogenosomes. <i>BioEssays</i> , 1999 , 21, 377-81	4.1	60
191	Higher-plant chloroplast and cytosolic 3-phosphoglycerate kinases: a case of endosymbiotic gene replacement. <i>Plant Molecular Biology</i> , 1996 , 30, 65-75	4.6	60
190	A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. <i>Nature Ecology and Evolution</i> , 2020 , 4, 534-542	12.3	57
189	Early Microbial Evolution: The Age of Anaerobes. <i>Cold Spring Harbor Perspectives in Biology</i> , 2015 , 8, a01	1815237	57
188	Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. <i>Genome Biology and Evolution</i> , 2013 , 5, 200-16	3.9	57

(1990-2000)

187	Base J originally found in kinetoplastida is also a minor constituent of nuclear DNA of Euglena gracilis. <i>Nucleic Acids Research</i> , 2000 , 28, 3017-21	20.1	56
186	Variability of wax ester fermentation in natural and bleached Euglena gracilis Strains in response to oxygen and the elongase inhibitor flufenacet. <i>Journal of Eukaryotic Microbiology</i> , 2010 , 57, 63-9	3.6	55
185	A briefly argued case that mitochondria and plastids are descendants of endosymbionts, but that the nuclear compartment is not. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1999 , 266, 1387-	1 39 5	55
184	Chloroplast class I and class II aldolases are bifunctional for fructose-1,6-biphosphate and sedoheptulose-1,7-biphosphate cleavage in the Calvin cycle. <i>FEBS Letters</i> , 1999 , 447, 200-2	3.8	55
183	ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. <i>Genome Biology and Evolution</i> , 2011 , 3, 140-50) ^{3.9}	53
182	Multiple recruitment of class-I aldolase to chloroplasts and eubacterial origin of eukaryotic class-II aldolases revealed by cDNAs from Euglena gracilis. <i>Current Genetics</i> , 1997 , 31, 430-8	2.9	53
181	Interspecific evolution: microbial symbiosis, endosymbiosis and gene transfer. <i>Environmental Microbiology</i> , 2003 , 5, 641-9	5.2	53
180	Purification and cloning of chloroplast 6-phosphogluconate dehydrogenase from spinach. Cyanobacterial genes for chloroplast and cytosolic isoenzymes encoded in eukaryotic chromosomes. <i>FEBS Journal</i> , 2001 , 268, 2678-86		53
179	Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor. <i>Genome Biology and Evolution</i> , 2016 , 8, 1950-70	3.9	51
178	Is ftsH the key to plastid longevity in sacoglossan slugs?. <i>Genome Biology and Evolution</i> , 2013 , 5, 2540-8	3.9	51
177	Gnetum and the Angiosperms: Molecular Evidence that Their Shared Morphological Characters Are Convergent, Rather than Homologous. <i>Molecular Biology and Evolution</i> , 1999 , 16, 1006-1009	8.3	51
176	The tree of life: introduction to an evolutionary debate. <i>Biology and Philosophy</i> , 2010 , 25, 441-453	1.7	50
175	Autocatalytic sets in metabolism. Journal of Systems Chemistry, 2015, 6, 4		49
174	Networks uncover hidden lexical borrowing in Indo-European language evolution. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2011 , 278, 1794-803	4.4	49
173	Acetate:succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: identification and characterization. <i>Journal of Biological Chemistry</i> , 2008 , 283, 1411-1418	5.4	49
172	The evolutionary origin of red algae as deduced from the nuclear genes encoding cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenases from Chondrus crispus. <i>Journal of Molecular Evolution</i> , 1994 , 38, 319-27	3.1	48
171	Early evolution without a tree of life. <i>Biology Direct</i> , 2011 , 6, 36	7.2	47
170	Hypothesis for the evolutionary origin of the chloroplast ribosomal protein L21 of spinach. <i>Current Genetics</i> , 1990 , 18, 553-6	2.9	47

169	Distribution and Nomenclature of Protein-coding Genes in 12 Sequenced Chloroplast Genomes. Plant Molecular Biology Reporter, 1998 , 16, 243-255	1.7	46
168	Speciation and Species Separation in Hordeum L. (Poaceae) Resolved by Discontinuous Molecular Markers1. <i>Plant Biology</i> , 2002 , 4, 567-575	3.7	45
167	Bifunctional aldehyde/alcohol dehydrogenase (ADHE) in chlorophyte algal mitochondria. <i>Plant Molecular Biology</i> , 2003 , 53, 175-88	4.6	45
166	Evolution of the Rubisco operon from prokaryotes to algae: structure and analysis of the rbcS gene of the brown alga Pylaiella littoralis. <i>Plant Molecular Biology</i> , 1991 , 17, 853-63	4.6	43
165	Protein import into hydrogenosomes of Trichomonas vaginalis involves both N-terminal and internal targeting signals: a case study of thioredoxin reductases. <i>Eukaryotic Cell</i> , 2008 , 7, 1750-7		42
164	Plastid-bearing sea slugs fix CO2 in the light but do not require photosynthesis to survive. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2014 , 281, 20132493	4.4	41
163	The actin-based machinery of Trichomonas vaginalis mediates flagellate-amoeboid transition and migration across host tissue. <i>Cellular Microbiology</i> , 2013 , 15, 1707-21	3.9	41
162	Structure and properties of an engineered transketolase from maize. <i>Plant Physiology</i> , 2003 , 132, 1941	-% .6	41
161	Genome history in the symbiotic hybrid Euglena gracilis. <i>Gene</i> , 2007 , 402, 35-9	3.8	40
160	Intron-dependent transient expression of the maize GapA1 gene. <i>Plant Molecular Biology</i> , 1995 , 28, 66	7-4.6	40
159	Is something wrong with the tree of life?. <i>BioEssays</i> , 1996 , 18, 523-527	4.1	40
158	Conservation of Transit Peptide-Independent Protein Import into the Mitochondrial and Hydrogenosomal Matrix. <i>Genome Biology and Evolution</i> , 2015 , 7, 2716-26	3.9	39
157	Molecular data from the chloroplast rpoC1 gene suggest a deep and distinct dichotomy of contemporary spermatophytes into two monophyla: gymnosperms (including Gnetales) and angiosperms. <i>Journal of Molecular Evolution</i> , 1999 , 49, 310-5	3.1	39
156	Molecular characterization of transketolase (EC 2.2.1.1) active in the Calvin cycle of spinach chloroplasts. <i>Plant Molecular Biology</i> , 1996 , 32, 475-84	4.6	39
155	Identification of prokaryotic homologues indicates an endosymbiotic origin for the alternative oxidases of mitochondria (AOX) and chloroplasts (PTOX). <i>Gene</i> , 2004 , 330, 143-8	3.8	38
154	Chloroplast and cytosolic triosephosphate isomerases from spinach: purification, microsequencing and cDNA cloning of the chloroplast enzyme. <i>Plant Molecular Biology</i> , 1994 , 26, 1961-73	4.6	38
153	Autocatalytic chemical networks at the origin of metabolism. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2020 , 287, 20192377	4.4	37
152	One step beyond a ribosome: The ancient anaerobic core. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2016 , 1857, 1027-1038	4.6	37

151	Concatenated alignments and the case of the disappearing tree. <i>BMC Evolutionary Biology</i> , 2014 , 14, 266	3	36
150	The missing link between hydrogenosomes and mitochondria. <i>Trends in Microbiology</i> , 2005 , 13, 457-9	12.4	34
149	Nucleotide distribution in gymnosperm nuclear sequences suggests a model for GC-content change in land-plant nuclear genomes. <i>Journal of Molecular Evolution</i> , 1994 , 39, 34-46	3.1	34
148	Transformation and conjugal transfer of foreign genes into the filamentous multicellular cyanobacteria (subsection V) Fischerella and Chlorogloeopsis. <i>Current Microbiology</i> , 2012 , 65, 552-60	2.4	33
147	The neglected genome. <i>EMBO Reports</i> , 2012 , 13, 473-4	6.5	33
146	Eubacterial origin of nuclear genes for chloroplast and cytosolic glucose-6-phosphate isomerase from spinach: sampling eubacterial gene diversity in eukaryotic chromosomes through symbiosis. <i>Gene</i> , 1998 , 214, 205-13	3.8	33
145	A positive definition of prokaryotes. <i>Nature</i> , 2006 , 442, 868	50.4	33
144	Phylogenetic analyses with systematic taxon sampling show that mitochondria branch within Alphaproteobacteria. <i>Nature Ecology and Evolution</i> , 2020 , 4, 1213-1219	12.3	33
143	Energy in Ancient Metabolism. <i>Cell</i> , 2017 , 168, 953-955	56.2	31
142	A novel prokaryotic trans-2-enoyl-CoA reductase from the spirochete Treponema denticola. <i>FEBS Letters</i> , 2007 , 581, 1561-6	3.8	31
141	Anaerobic animals from an ancient, anoxic ecological niche. <i>BMC Biology</i> , 2010 , 8, 32	7.3	30
140	Purification, molecular cloning and expression in Escherichia coli of homospermidine synthase from Rhodopseudomonas viridis. <i>FEBS Journal</i> , 1996 , 240, 373-9		30
139	Difficulties in testing for covarion-like properties of sequences under the confounding influence of changing proportions of variable sites. <i>Molecular Biology and Evolution</i> , 2008 , 25, 1512-20	8.3	29
138	Strong functional GC pressure in a light-regulated maize gene encoding subunit GAPA of chloroplast glyceraldehyde-3-phosphate dehydrogenase: implications for the evolution of GAPA pseudogenes. <i>Journal of Molecular Evolution</i> , 1989 , 29, 412-21	3.1	29
137	Physiology, anaerobes, and the origin of mitosing cells 50 years on. <i>Journal of Theoretical Biology</i> , 2017 , 434, 2-10	2.3	28
136	Cloning of the amphibolic Calvin cycle/OPPP enzyme D-ribulose-5-phosphate 3-epimerase (EC 5.1.3.1) from spinach chloroplasts: functional and evolutionary aspects. <i>Plant Molecular Biology</i> , 1995 , 29, 1279-91	4.6	28
135	Molecular characterization of a novel, nuclear-encoded, NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase in plastids of the gymnosperm Pinus sylvestris L. <i>Plant Molecular Biology</i> , 1994 , 26, 1155-66	4.6	28
134	Serpentinization: Connecting Geochemistry, Ancient Metabolism and Industrial Hydrogenation. <i>Life</i> , 2018 , 8,	3	28

133	Eukaryotes really are special, and mitochondria are why. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E4823	11.5	27
132	Native metals, electron bifurcation, and CO reduction in early biochemical evolution. <i>Current Opinion in Microbiology</i> , 2018 , 43, 77-83	7.9	27
131	Older Than Genes: The Acetyl CoA Pathway and Origins. Frontiers in Microbiology, 2020, 11, 817	5.7	26
130	Networks of lexical borrowing and lateral gene transfer in language and genome evolution. <i>BioEssays</i> , 2014 , 36, 141-50	4.1	26
129	Microbiology. Seeing green and red in diatom genomes. <i>Science</i> , 2009 , 324, 1651-2	33.3	26
128	Energy for two: New archaeal lineages and the origin of mitochondria. <i>BioEssays</i> , 2016 , 38, 850-6	4.1	26
127	Late Mitochondrial Origin Is an Artifact. <i>Genome Biology and Evolution</i> , 2017 , 9, 373-379	3.9	25
126	Symbiogenesis, gradualism, and mitochondrial energy in eukaryote origin. <i>Periodicum Biologorum</i> , 2017 , 119, 141-158	1	25
125	Energy, genes and evolution: introduction to an evolutionary synthesis. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2013 , 368, 20120253	5.8	24
124	The evolution of eukaryotes. <i>Science</i> , 2007 , 316, 542-3; author reply 542-3	33.3	24
124	The evolution of eukaryotes. <i>Science</i> , 2007 , 316, 542-3; author reply 542-3 Of early animals, anaerobic mitochondria, and a modern sponge. <i>BioEssays</i> , 2014 , 36, 924-32	33.3	24
123	Of early animals, anaerobic mitochondria, and a modern sponge. <i>BioEssays</i> , 2014 , 36, 924-32 Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but	4.1	23
123	Of early animals, anaerobic mitochondria, and a modern sponge. <i>BioEssays</i> , 2014 , 36, 924-32 Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues. <i>Molecular Biology and Evolution</i> , 2008 , 25, 111-9 Mosses do express conventional, distantly B-type-related phytochromes. Phytochrome of	4.1	23
123 122 121	Of early animals, anaerobic mitochondria, and a modern sponge. <i>BioEssays</i> , 2014 , 36, 924-32 Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues. <i>Molecular Biology and Evolution</i> , 2008 , 25, 111-9 Mosses do express conventional, distantly B-type-related phytochromes. Phytochrome of Physcomitrella patens (Hedw.). <i>FEBS Letters</i> , 1993 , 334, 95-100 Using Phylogenetic Networks to Model Chinese Dialect History. <i>Language Dynamics and Change</i> ,	4.1 8.3 3.8	23 23 23
123 122 121	Of early animals, anaerobic mitochondria, and a modern sponge. <i>BioEssays</i> , 2014 , 36, 924-32 Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues. <i>Molecular Biology and Evolution</i> , 2008 , 25, 111-9 Mosses do express conventional, distantly B-type-related phytochromes. Phytochrome of Physcomitrella patens (Hedw.). <i>FEBS Letters</i> , 1993 , 334, 95-100 Using Phylogenetic Networks to Model Chinese Dialect History. <i>Language Dynamics and Change</i> , 2014 , 4, 222-252 Paraphyly of bryophytes and close relationship of hornworts and vascular plants inferred from	4.1 8.3 3.8 0.4	23 23 23 22
123 122 121 120	Of early animals, anaerobic mitochondria, and a modern sponge. <i>BioEssays</i> , 2014 , 36, 924-32 Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues. <i>Molecular Biology and Evolution</i> , 2008 , 25, 111-9 Mosses do express conventional, distantly B-type-related phytochromes. Phytochrome of Physcomitrella patens (Hedw.). <i>FEBS Letters</i> , 1993 , 334, 95-100 Using Phylogenetic Networks to Model Chinese Dialect History. <i>Language Dynamics and Change</i> , 2014 , 4, 222-252 Paraphyly of bryophytes and close relationship of hornworts and vascular plants inferred from chloroplast rDNA spacers sequence analysis. <i>Arctoa</i> , 2002 , 11, 31-43 Evolution of spliceosomal introns following endosymbiotic gene transfer. <i>BMC Evolutionary Biology</i> ,	4.1 8.3 3.8 0.4	2323232222

115	Physiology, phylogeny, early evolution, and GAPDH. <i>Protoplasma</i> , 2017 , 254, 1823-1834	3.4	20
114	Archaeal Histone Contributions to the Origin of Eukaryotes. <i>Trends in Microbiology</i> , 2019 , 27, 703-714	12.4	20
113	Energy metabolism in anaerobic eukaryotes and Earth's late oxygenation. <i>Free Radical Biology and Medicine</i> , 2019 , 140, 279-294	7.8	20
112	Mitochondria, complexity, and evolutionary deficit spending. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E666	11.5	20
111	A machine learning approach to identify hydrogenosomal proteins in Trichomonas vaginalis. <i>Eukaryotic Cell</i> , 2012 , 11, 217-28		20
110	Chloroplast phosphoglycerate kinase from Euglena gracilis: endosymbiotic gene replacement going against the tide. <i>FEBS Journal</i> , 2004 , 271, 4123-31		20
109	Oxygen Reductases in Alphaproteobacterial Genomes: Physiological Evolution From Low to High Oxygen Environments. <i>Frontiers in Microbiology</i> , 2019 , 10, 499	5.7	19
108	The Ribofilm as a Concept for Life's Origins. <i>Cell</i> , 2015 , 162, 13-5	56.2	19
107	The N-terminal sequences of four major hydrogenosomal proteins are not essential for import into hydrogenosomes of Trichomonas vaginalis. <i>Journal of Eukaryotic Microbiology</i> , 2013 , 60, 89-97	3.6	19
106	Genetic Diversity, Evolution and Domestication of Wheat and Barley in the Fertile Crescent 2010 , 137-	166	19
105	Sequences of rDNA internal transcribed spacers from the chloroplast DNA of 26 bryophytes: properties and phylogenetic utility. <i>FEBS Letters</i> , 1998 , 422, 47-51	3.8	19
104	The smallest known eukaryotic genomes encode a protein gene: towards an understanding of nucleomorph functions. <i>Molecular Genetics and Genomics</i> , 1994 , 243, 600-4		19
103	The Calvin Cycle and Its Regulation. Advances in Photosynthesis and Respiration, 2000, 9-51	1.7	19
102	Quantifying the Number of Independent Organelle DNA Insertions in Genome Evolution and Human Health. <i>Genome Biology and Evolution</i> , 2017 , 9, 1190-1203	3.9	18
101	Functional kleptoplasty in a limapontioidean genus: phylogeny, food preferences and photosynthesis inCostasiella, with a focus onC. ocellifera(Gastropoda: Sacoglossa). <i>Journal of Molluscan Studies</i> , 2014 , 80, 499-507	1.1	18
100	Expression of nucleus-encoded genes for chloroplast proteins in the flagellate Euglena gracilis. <i>Journal of Eukaryotic Microbiology</i> , 2009 , 56, 159-66	3.6	18
99	Purification, microsequencing and cloning of spinach ATP-dependent phosphofructokinase link sequence and function for the plant enzyme. <i>FEBS Journal</i> , 2007 , 274, 429-38	5.7	18
98	Euglena gracilis ribonucleotide reductase: the eukaryote class II enzyme and the possible antiquity of eukaryote B12 dependence. <i>Journal of Biological Chemistry</i> , 2006 , 281, 5604-11	5.4	18

97	Rate and polarity of gene fusion and fission in Oryza sativa and Arabidopsis thaliana. <i>Molecular Biology and Evolution</i> , 2007 , 24, 110-21	8.3	18
96	Molecular analysis of the Ubiquitous (Uq) transposable element system of Zea mays. <i>Molecular Genetics and Genomics</i> , 1991 , 230, 201-8		18
95	Endosymbioses in Sacoglossan Seaslugs: Plastid-Bearing Animals that Keep Photosynthetic Organelles Without Borrowing Genes 2014 , 291-324		18
94	Something special about CO-dependent CO fixation. FEBS Journal, 2018, 285, 4181-4195	5.7	18
93	Currency, Exchange, and Inheritance in the Evolution of Symbiosis. <i>Trends in Microbiology</i> , 2019 , 27, 836	-84.9	17
92	A method for isolation of cDNA-quality mRNA from immature seeds of a gymnosperm rich in polyphenolics. <i>Plant Molecular Biology</i> , 1993 , 22, 555-6	4.6	17
91	The Mitochondrion of Euglena gracilis. Advances in Experimental Medicine and Biology, 2017, 979, 19-37	3.6	16
90	The ambivalent role of water at the origins of life. FEBS Letters, 2020, 594, 2717-2733	3.8	16
89	Catalysts, autocatalysis and the origin of metabolism. <i>Interface Focus</i> , 2019 , 9, 20190072	3.9	16
88	Gene structure, expression in Escherichia coli and biochemical properties of the NAD+ -dependent glyceraldehyde-3-phosphate dehydrogenase from Pinus sylvestris chloroplasts. <i>Gene</i> , 1998 , 209, 167-74	1 ^{3.8}	16
87	A meeting at the gene. Biodiversity and natural history. <i>EMBO Reports</i> , 2000 , 1, 208-10	6.5	16
86	Chloroplast DNA restriction site polymorphism inGenisteae (Leguminosae) suggests a common origin for European and American lupines. <i>Plant Systematics and Evolution</i> , 1994 , 193, 95-106	1.3	16
85	Physiology, phylogeny, and LUCA. <i>Microbial Cell</i> , 2016 , 3, 582-587	3.9	16
84	Nitrogenase Inhibition Limited Oxygenation of Earth's Proterozoic Atmosphere. <i>Trends in Plant Science</i> , 2019 , 24, 1022-1031	13.1	15
83	Bacterial Genes Outnumber Archaeal Genes in Eukaryotic Genomes. <i>Genome Biology and Evolution</i> , 2020 , 12, 282-292	3.9	15
82	Testing hypotheses without considering predictions. <i>BioEssays</i> , 2007 , 29, 500-3	4.1	15
81	Does endo-symbiosis explain the origin of the nucleus?. <i>Nature Cell Biology</i> , 2001 , 3, E173-4	23.4	15
80	Origin of intronsBarly or late?. <i>Nature</i> , 1994 , 369, 527-528	50.4	15

(2009-2015)

79	Structure and Evolution of the Archaeal Lipid Synthesis Enzyme sn-Glycerol-1-phosphate Dehydrogenase. <i>Journal of Biological Chemistry</i> , 2015 , 290, 21690-704	5.4	13
78	Eukaryote lateral gene transfer is Lamarckian. <i>Nature Ecology and Evolution</i> , 2018 , 2, 754	12.3	13
77	A reality check for alignments and trees. <i>Trends in Genetics</i> , 2007 , 23, 478-80	8.5	13
76	Perspectives: evolutionary biology. A powerhouse divided. <i>Science</i> , 2000 , 287, 1219	33.3	13
75	Homospermidine synthase of Rhodopseudomonas viridis: Substrate specificity and effects of the heterologously expressed enzyme on polyamine metabolism of Escherichia coli <i>Journal of General and Applied Microbiology</i> , 1996 , 42, 411-419	1.5	13
74	Microsequencing and cDNA cloning of the Calvin cycle/OPPP enzyme ribose-5-phosphate isomerase (EC 5.3.1.6) from spinach chloroplasts. <i>Plant Molecular Biology</i> , 1996 , 30, 795-805	4.6	13
73	Chloroplast incorporation and long-term photosynthetic performance through the life cycle in laboratory cultures of Elysia timida (Sacoglossa, Heterobranchia). <i>Frontiers in Zoology</i> , 2014 , 11, 5	2.8	12
72	Lipids Are the Preferred Substrate of the Protist Naegleria gruberi, Relative of a Human Brain Pathogen. <i>Cell Reports</i> , 2018 , 25, 537-543.e3	10.6	12
71	The origin of symbiogenesis: An annotated English translation of Mereschkowsky's 1910 paper on the theory of two plasma lineages. <i>BioSystems</i> , 2021 , 199, 104281	1.9	12
70	Carbon-Metal Bonds: Rare and Primordial in Metabolism. <i>Trends in Biochemical Sciences</i> , 2019 , 44, 807-	31& 0.3	11
69	Reply to 'Is LUCA a thermophilic progenote?'. <i>Nature Microbiology</i> , 2016 , 1, 16230	26.6	11
68	Supertrees and symbiosis in eukaryote genome evolution. <i>Trends in Microbiology</i> , 2007 , 15, 435-7	12.4	11
67	Pathogenic archaebacteria: do they not exist because archaebacteria use different vitamins?. <i>BioEssays</i> , 2004 , 26, 592-3; author reply 593	4.1	11
66	Annotated English translation of Mereschkowsky's 1905 paper B er Natur und Ursprung der Chromatophoren im Pflanzenreichell <i>European Journal of Phycology</i> , 1999 , 34, 287-295	2.2	11
65	Gene Duplications Trace Mitochondria to the Onset of Eukaryote Complexity. <i>Genome Biology and Evolution</i> , 2021 , 13,	3.9	11
64	Physiological limits to life in anoxic subseafloor sediment. FEMS Microbiology Reviews, 2020 , 44, 219-23	115.1	10
63	Why Have Organelles Retained Genomes?. Cell Systems, 2016, 2, 70-2	10.6	10
62	A machine-learning approach reveals that alignment properties alone can accurately predict inference of lateral gene transfer from discordant phylogenies. <i>Molecular Biology and Evolution</i> , 2009 , 26, 1931-9	8.3	10

61	Origin and phylogenetic relationships of [4Fe-4S]-containing O sensors of bacteria. <i>Environmental Microbiology</i> , 2018 , 20, 4567-4586	5.2	10
60	A spectrum of verticality across genes. <i>PLoS Genetics</i> , 2020 , 16, e1009200	6	9
59	Anomalous Phylogenetic Behavior of Ribosomal Proteins in Metagenome-Assembled Asgard Archaea. <i>Genome Biology and Evolution</i> , 2021 , 13,	3.9	9
58	Physiological evolution: Genomic redox footprints. <i>Nature Plants</i> , 2017 , 3, 17071	11.5	8
57	An Algal Greening of Land. <i>Cell</i> , 2018 , 174, 256-258	56.2	8
56	Knockout of the abundant Trichomonas vaginalis hydrogenosomal membrane protein TvHMP23 increases hydrogenosome size but induces no compensatory up-regulation of paralogous copies. <i>FEBS Letters</i> , 2013 , 587, 1333-9	3.8	8
55	On Being the Right Size as an Animal with Plastids. Frontiers in Plant Science, 2017, 8, 1402	6.2	8
54	cDNA cloning of a Sec61 homologue from the cryptomonad alga Pyrenomonas salina. <i>Current Genetics</i> , 1994 , 26, 410-4	2.9	8
53	Adaptation to life on land at high O via transition from ferredoxin-to NADH-dependent redox balance. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2019 , 286, 20191491	4.4	7
52	Plastid origin: who, when and why?. Acta Societatis Botanicorum Poloniae, 2014, 83, 281-289	1.5	7
51	High growth rate, photosynthesis rate and increased hydrogen(ases) in manganese deprived cells of a newly isolated Nostoc-like cyanobacterium (SAG 2306). <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 12200-12210	6.7	7
50	Anaerobic Eukaryotes in Pursuit of Phylogenetic Normality: the Evolution of Hydrogenosomes and Mitosomes 2007 , 1-20		7
49	Origin of Mitochondria and Hydrogenosomes 2007 ,		7
48	The metabolic network of the last bacterial common ancestor. <i>Communications Biology</i> , 2021 , 4, 413	6.7	7
47	The Autotrophic Core: An Ancient Network of 404 Reactions Converts H, CO, and NH into Amino Acids, Bases, and Cofactors. <i>Microorganisms</i> , 2021 , 9,	4.9	7
46	Transketolase from Cyanophora paradoxa: in vitro import into cyanelles and pea chloroplasts and a complex history of a gene often, but not always, transferred in the context of secondary endosymbiosis. <i>Journal of Eukaryotic Microbiology</i> , 2009 , 56, 568-76	3.6	6
45	Angiosperm origins. <i>Nature</i> , 1989 , 342, 132-132	50.4	6
44	Subcellular targeting of proteins and pathways during evolution. New Phytologist, 2014, 201, 1-2	9.8	5

(2021-1993)

43	Molecular phylogeny of the atpB and atpE genes of the brown alga Pylaiella littoralis. <i>European Journal of Phycology</i> , 1993 , 28, 111-113	2.2	5
42	Enlarged and highly repetitive plastome of Lagarostrobos and plastid phylogenomics of Podocarpaceae. <i>Molecular Phylogenetics and Evolution</i> , 2019 , 133, 24-32	4.1	5
41	Mosaic mitochondrial-plastid insertions into the nuclear genome show evidence of both non-homologous end joining and homologous recombination. <i>BMC Evolutionary Biology</i> , 2018 , 18, 162	3	5
40	Mosaic bacterial chromosomes: a challenge en route to a tree of genomes 1999 , 21, 99		5
39	Unmiraculous facultative anaerobes (comment on DOI 10.1002/bies.201600174). <i>BioEssays</i> , 2017 , 39, 1700041	4.1	4
38	Failure to Recover Major Events of Gene Flux in Real Biological Data Due to Method Misapplication. <i>Genome Biology and Evolution</i> , 2018 , 10, 1198-1209	3.9	4
37	The Origin of a Killer Revealed by Bronze Age Yersinia Genomes. <i>Cell Host and Microbe</i> , 2015 , 18, 513-4	23.4	4
36	CA2+ BINDING PROTEIN CALRETICULIN IN CHLAMYDOMONAS REINHARDTII (CHLOROPHYTA): BIOCHEMICAL CHARACTERIZATION, DIFFERENTIAL EXPRESSION DURING SEXUAL REPRODUCTION, AND PHYLOGENETIC ANALYSIS. <i>Journal of Phycology</i> , 1999 , 35, 1224-1232	3	4
35	Primitive anaerobic protozoa: the wrong host for mitochondria and hydrogenosomes?. <i>Microbiology</i> (United Kingdom), 2000 , 146 (Pt 5), 1021-1022	2.9	4
34	Anomalous phylogenetic behavior of ribosomal proteins in metagenome assembled genomes		4
33	Evidence for a Syncytial Origin of Eukaryotes from Ancestral State Reconstruction. <i>Genome Biology and Evolution</i> , 2021 , 13,	3.9	4
32	Animals, anoxic environments, and reasons to go deep. <i>BMC Biology</i> , 2016 , 14, 44	7.3	4
31	Elusive data underlying debate at the prokaryote-eukaryote divide. <i>Biology Direct</i> , 2018 , 13, 21	7.2	4
30	Hydrothermalquellen und der Ursprung des Lebens. Alles hat einen Anfang, auch die Evolution. <i>Biologie in Unserer Zeit</i> , 2009 , 39, 166-174	0.1	3
29	Eukaryote and Mitochondrial Origins: Two Sides of the Same Coin and Too Much Ado About Oxygen 2007 , 55-73		3
28	An Open Reading Frame (ycf11) is Evolutionary Conserved from Cyanobacteria to the Plastid DNAs of Archegoniates and Gymnosperms, is Modified in the Plastid DNAs of Dicots, and is not Plastome Encoded in Monocots. <i>Journal of Plant Physiology</i> , 1995 , 146, 258-262	3.6	3
27	Secondary structure and phylogeny of the chloroplast 23S rRNA gene from the brown alga Pylaiella littoralis. <i>Plant Molecular Biology</i> , 1993 , 21, 779-87	4.6	3
26	Energy at Origins: Favorable Thermodynamics of Biosynthetic Reactions in the Last Universal Common Ancestor (LUCA) <i>Frontiers in Microbiology</i> , 2021 , 12, 793664	5.7	3

25	Biochemical and Evolutionary Aspects of Eukaryotes That Inhabit Sulfidic Environments 2008, 36-45		3
24	Late mitochondrial origin is pure artefact		3
23	Autocatalytic chemical networks preceded proteins and RNA in evolution		3
22	Gene duplications trace mitochondria to the onset of eukaryote complexity		3
21	Gene Duplications Are At Least 50 Times Less Frequent than Gene Transfers in Prokaryotic Genomes. <i>Genome Biology and Evolution</i> , 2021 , 13,	3.9	3
20	Wo lebten die ersten Zellen 🗓 nd wovon?. <i>Biologie in Unserer Zeit</i> , 2017 , 47, 186-192	0.1	2
19	Archaea, the tree of life, and cellular evolution in eukaryotes. Science China Earth Sciences, 2019 , 62, 48	9 -⊈6 6	2
18	Algal endosymbionts in European Hydra strains reflect multiple origins of the zoochlorella symbiosis. <i>Molecular Phylogenetics and Evolution</i> , 2015 , 93, 55-62	4.1	2
17	Asking endosymbionts to do an enzyme's job. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E4543-E4544	11.5	2
16	Endosymbiotic Gene Transfer 2002 , 351-XII		2
15	Pyrophosphate and Irreversibility in Evolution, or why PP Is Not an Energy Currency and why Nature Chose Triphosphates. <i>Frontiers in Microbiology</i> , 2021 , 12, 759359	5.7	2
14	A hydrogen dependent geochemical analogue of primordial carbon and energy metabolism		2
13	Mitochondria branch within Alphaproteobacteria		2
12	Sediment, methane and energy. <i>Nature Microbiology</i> , 2019 , 4, 547-549	26.6	1
11	Big questions and skepsis: Review of In Search of Cell History. <i>BioEssays</i> , 2015 , 37, 349-351	4.1	1
10	Symbiotic Associations: All About Chemistry. <i>Advances in Environmental Microbiology</i> , 2016 , 3-11	1.3	1
9	9 Early life		1
8	Application and comparative performance of network modularity algorithms to ecological communities classification. <i>Acta Societatis Botanicorum Poloniae</i> , 2014 , 83, 93-102	1.5	1

LIST OF PUBLICATIONS

7	Neaning?. <i>Philosophies</i> , 2021 , 6, 33	0.7	1
6	Mitochondrial Origins of Human Nuclear Genes and DNA Sequences		1
5	The Evolution of Oxygen-Independent Energy Metabolism in Eukaryotes with Hydrogenosomes and Mitosomes. <i>Microbiology Monographs</i> , 2019 , 7-29	0.8	
4	Hydrothermal vents, energy, and the origin of life: On the antiquity of methyl groups. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2014 , 1837, e1-e2	4.6	
3	Crystal ball. Getting a better picture of evolution. <i>Environmental Microbiology</i> , 2005 , 7, 479-80	5.2	
2	The alternative oxidase from Euglena gracilis. <i>Journal of Eukaryotic Microbiology</i> , 2005 , 52, 7S-27S	3.6	
1	Endosymbiosis and the evolution of complexity. <i>Biochemist</i> , 2013 , 35, 4-8	0.5	