## Michel Maitre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7888648/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Role for Xanthurenic Acid in the Control of Brain Dopaminergic Activity. International Journal of<br>Molecular Sciences, 2021, 22, 6974.                                                                                       | 1.8 | 16        |
| 2  | Tryptophan metabolites modify brain Aβ peptide degradation: A role in Alzheimer's disease?. Progress in<br>Neurobiology, 2020, 190, 101800.                                                                                      | 2.8 | 34        |
| 3  | TSPO Ligands Boost Mitochondrial Function and Pregnenolone Synthesis. Journal of Alzheimer's<br>Disease, 2019, 72, 1045-1058.                                                                                                    | 1.2 | 38        |
| 4  | 5-HIAA induces neprilysin to ameliorate pathophysiology and symptoms in a mouse model for<br>Alzheimer's disease. Acta Neuropathologica Communications, 2018, 6, 136.                                                            | 2.4 | 26        |
| 5  | A compound heterozygote case of isolated sulfite oxidase deficiency. Molecular Genetics and Metabolism Reports, 2017, 12, 99-102.                                                                                                | 0.4 | 4         |
| 6  | Discovery of Imidazoquinazolinone Derivatives as TSPO Ligands Modulating Neurosteroidogenesis<br>and Cellular Bioenergetics in Neuroblastoma Cells Expressing Amyloid Precursor Protein.<br>ChemistrySelect, 2017, 2, 6452-6457. | 0.7 | 9         |
| 7  | Mechanisms for the Specific Properties of γâ€Hydroxybutyrate in Brain. Medicinal Research Reviews, 2016, 36, 363-388.                                                                                                            | 5.0 | 35        |
| 8  | Xanthurenic acid is localized in neurons in the central nervous system. Neuroscience, 2016, 329, 226-238.                                                                                                                        | 1.1 | 14        |
| 9  | A proposed preventive role for Gamma-hydroxybutyrate (XyremR) in Alzheimer's disease. Alzheimer's<br>Research and Therapy, 2016, 8, 37.                                                                                          | 3.0 | 9         |
| 10 | γ-Hydroxybutyrate (Xyrem) ameliorates clinical symptoms and neuropathology in a mouse model of<br>Alzheimer's disease. Neurobiology of Aging, 2015, 36, 832-844.                                                                 | 1.5 | 30        |
| 11 | Detecting spatial memory deficits beyond blindness in tg2576 Alzheimer mice. Neurobiology of Aging, 2013, 34, 716-730.                                                                                                           | 1.5 | 45        |
| 12 | The neuroprotector kynurenic acid increases neuronal cell survival through neprilysin induction.<br>Neuropharmacology, 2013, 70, 254-260.                                                                                        | 2.0 | 65        |
| 13 | Xanthurenic Acid Binds to Neuronal G-Protein-Coupled Receptors That Secondarily Activate Cationic<br>Channels in the Cell Line NCB-20. PLoS ONE, 2012, 7, e48553.                                                                | 1.1 | 25        |
| 14 | Calcium and cAMP signaling induced by gamma-hydroxybutyrate receptor(s) stimulation in NCB-20 neurons. Neuroscience, 2010, 167, 49-59.                                                                                           | 1.1 | 5         |
| 15 | A single acute pharmacological dose of γ-hydroxybutyrate modifies multiple gene expression patterns<br>in rat hippocampus and frontal cortex. Physiological Genomics, 2010, 41, 146-160.                                         | 1.0 | 19        |
| 16 | Pharmacological doses of gamma-hydroxybutyrate (GHB) potentiate histone acetylation in the rat brain by histone deacetylase inhibition. Neuropharmacology, 2009, 57, 137-147.                                                    | 2.0 | 23        |
| 17 | Xanthurenic acid distribution, transport, accumulation and release in the rat brain. Journal of Neurochemistry, 2008, 105, 982-993.                                                                                              | 2.1 | 57        |
| 18 | Cloning and functional characterization of a gammaâ€hydroxybutyrate receptor identified in the human brain FASEB Journal, 2007, 21, 885-895                                                                                      | 0.2 | 82        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Immunohistochemical localization of a GHB receptor-like protein isolated from rat brain. Journal of<br>Comparative Neurology, 2006, 498, 508-524.                                                                                            | 0.9 | 21        |
| 20 | Evidence for a Role of the Parafascicular Nucleus of the Thalamus in the Control of Epileptic Seizures<br>by the Superior Colliculus. Epilepsia, 2005, 46, 141-145.                                                                          | 2.6 | 32        |
| 21 | Î <sup>3</sup> -hydroxybutyrate receptor function determined by stimulation of rubidium and calcium movements<br>from NCB-20 neurons. Neuroscience, 2003, 116, 1021-1031.                                                                    | 1.1 | 23        |
| 22 | Cloning and characterization of a rat brain receptor that binds the endogenous neuromodulator<br>γâ€hydroxybutyrate. FASEB Journal, 2003, 17, 1691-1693.                                                                                     | 0.2 | 110       |
| 23 | Mss4Gene Is Up-Regulated in Rat Brain after Chronic Treatment with Antidepressant and<br>Down-Regulated When Rats Are Anhedonic. Molecular Pharmacology, 2002, 62, 1332-1338.                                                                | 1.0 | 22        |
| 24 | Gamma-hydroxybutyrate increases tryptophan availability and potentiates serotonin turnover in rat<br>brain. Life Sciences, 2002, 70, 2101-2112.                                                                                              | 2.0 | 40        |
| 25 | Evidence for a gamma-hydroxybutyrate (CHB) uptake by rat brain synaptic vesicles. Journal of<br>Neurochemistry, 2002, 80, 899-904.                                                                                                           | 2.1 | 30        |
| 26 | Circadian tryptophan hydroxylase levels and serotonin release in the suprachiasmatic nucleus of the rat. European Journal of Neuroscience, 2002, 15, 833-840.                                                                                | 1.2 | 58        |
| 27 | Immunohistochemical studies of the localization of neurons containing the enzyme that synthesizes<br>dopamine, GABA, or ?-hydroxybutyrate in the rat substantia nigra and striatum. Journal of Comparative<br>Neurology, 2000, 426, 549-560. | 0.9 | 46        |
| 28 | Gamma-hydroxybutyric acid as a signaling molecule in brain. Alcohol, 2000, 20, 277-283.                                                                                                                                                      | 0.8 | 53        |
| 29 | Hypoexpression of Benzodiazepine Receptors in the Amygdala of Neophobic BALB/c Mice Compared to C57BL/6 Mice. Pharmacology Biochemistry and Behavior, 2000, 65, 35-38.                                                                       | 1.3 | 39        |
| 30 | Reduction of Blood Ethanol Levels by the Gamma-Hydroxybutyric Acid Receptor Antagonist, NCS-382.<br>Alcohol, 1999, 17, 93-95.                                                                                                                | 0.8 | 2         |
| 31 | γ-hydroxybutyrate receptor function studied by the modulation of nitric oxide synthase activity in rat<br>frontal cortex punches. Biochemical Pharmacology, 1999, 58, 1815-1819.                                                             | 2.0 | 20        |
| 32 | Gamma-Hydroxybutyrate and Cocaine Administration Increases mRNA Expression of Dopamine D1 and D2<br>Receptors in Rat Brain. Neuropsychopharmacology, 1999, 21, 662-669.                                                                      | 2.8 | 38        |
| 33 | Prodynorphin and proenkephalin mRNAs are increased in rat brain after acute and chronic administration of gamma-hydroxybutyrate. Neuroscience Letters, 1999, 262, 65-68.                                                                     | 1.0 | 15        |
| 34 | Neurochemical and electrophysiological evidence for the existence of a functional γ-hydroxybutyrate system in NCB-20 neurons. Neuroscience, 1998, 86, 989-1000.                                                                              | 1.1 | 36        |
| 35 | The anxiolytic effect of γ-hydroxybutyrate in the elevated plus maze is reversed by the benzodiazepine receptor antagonist, flumazenil. European Journal of Pharmacology, 1998, 342, 21-27.                                                  | 1.7 | 51        |
| 36 | Sulpiride, but not haloperidol, up-regulates γ-hydroxybutyrate receptors in vivo and in cultured cells.<br>European Journal of Pharmacology, 1998, 346, 331-337.                                                                             | 1.7 | 14        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Cloning of a rat brain succinic semialdehyde reductase involved in the synthesis of the neuromodulator γ-hydroxybutyrate. Biochemical Journal, 1998, 334, 43-50.                                                               | 1.7 | 26        |
| 38 | THE Î <sup>3</sup> -HYDROXYBUTYRATE SIGNALLING SYSTEM IN BRAIN: ORGANIZATION AND FUNCTIONAL IMPLICATIONS.<br>Progress in Neurobiology, 1997, 51, 337-361.                                                                      | 2.8 | 444       |
| 39 | Kinetic characterisation and solubilisation of γ-hydroxybutyrate receptors from rat brain.<br>Neuroscience Letters, 1996, 209, 25-28.                                                                                          | 1.0 | 9         |
| 40 | Blockade of the discriminative stimulus effects of γ-hydroxybutyric acid (GHB) by the GHB receptor antagonist NCS-382. Physiology and Behavior, 1995, 58, 587-590.                                                             | 1.0 | 39        |
| 41 | γ-Hydroxybutyrate receptor binding in rat brain is inhibited by guanyl nucleotides and pertussis toxin.<br>Neuroscience Letters, 1995, 189, 51-53.                                                                             | 1.0 | 37        |
| 42 | Ultrastructural analysis of tryptophan hydroxylase immunoreactive nerve terminals in the rat<br>cerebral cortex and hippocampus: their associations with local blood vessels. Neuroscience, 1995, 66,<br>555-569.              | 1.1 | 70        |
| 43 | β-Nerve Growth Factor Levels in Newborn Cord Sera. Pediatric Research, 1994, 35, 637-639.                                                                                                                                      | 1.1 | 23        |
| 44 | Displacement of [3H]γ-hydroxybutyrate binding by benzamide neuroleptics and prochlorperazine but<br>not by other antipsychotics. European Journal of Pharmacology, 1994, 256, 211-214.                                         | 1.7 | 22        |
| 45 | Characterization of methionine-enkephalin release in the rat striatum by in vivo dialysis: Effects of<br>gamma-hydroxybutyrate on cellular and extracellular methionine-enkephalin levels. Neuroscience,<br>1994, 60, 637-648. | 1.1 | 24        |
| 46 | Selective distribution pattern of γ-hydroxybutyrate receptors in the rat forebrain and midbrain as revealed by quantitative autoradiography. Brain Research, 1992, 572, 345-348.                                               | 1.1 | 89        |
| 47 | Isolation of human brain protein kinase C: Evidence for kinase C catalytic fragment modulating G<br>protein-GTPase activity. Biochemical and Biophysical Research Communications, 1991, 174, 593-599.                          | 1.0 | 5         |
| 48 | Anti-sedative and anti-cataleptic properties of NCS-382, a Î <sup>3</sup> -hydroxybutyrate receptor antagonist.<br>European Journal of Pharmacology, 1991, 203, 393-397.                                                       | 1.7 | 47        |
| 49 | Primary dissociated cell culture of embryonic rat metencephalon: presence of GABA in serotonergic neurons. Neuroscience Letters, 1991, 125, 101-106.                                                                           | 1.0 | 7         |
| 50 | Extracellular Events Induced by ?-Hydroxybutyrate in Striatum: A Microdialysis Study. Journal of<br>Neurochemistry, 1991, 56, 938-944.                                                                                         | 2.1 | 100       |
| 51 | Isolation of Monoaminergic Synaptosomes from Rat Brain by Immunomagnetophoresis. Journal of<br>Neurochemistry, 1991, 56, 1569-1580.                                                                                            | 2.1 | 8         |
| 52 | Tryptophan Hydroxylase Synthesis Is Induced by 3', 5'-Cyclic Adenosine Monophosphate During<br>Circadian Rhythm in the Rat Pineal Gland. Journal of Neurochemistry, 1991, 57, 1516-1521.                                       | 2.1 | 64        |
| 53 | Purification and characterization of G proteins from human brain: modification of GTPase activity upon phosphorylation. Molecular and Cellular Biochemistry, 1991, 107, 65-77.                                                 | 1.4 | 10        |
| 54 | Effects of phospholipases, proteases and neuraminidase on ?-hydroxybutyrate binding sites. Molecular and Cellular Biochemistry, 1990, 93, 87-94.                                                                               | 1.4 | 8         |

| #  | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Increased Î <sup>3</sup> -hydroxybutyric acid receptors in thalamus of a genetic animal model of petit mal epilepsy.<br>Epilepsy Research, 1990, 7, 121-128.                                                                                                                                 | 0.8 | 36        |
| 56 | Trans-γ-hydroxycrotonic acid binding sites in brain: evidence for a subpopulation of γ-hydroxybutyrate.<br>Neuroscience Letters, 1990, 110, 204-209.                                                                                                                                         | 1.0 | 15        |
| 57 | Variation of tryptophan-5-hydroxylase concentration in the rat raphe dorsalis nucleus<br>afterp-chlorophenylalanine administration. I. A model to study the turnover of the enzymatic protein.<br>Brain Research, 1990, 536, 41-45.                                                          | 1.1 | 33        |
| 58 | Variation of tryptophan-5-hydroxylase concentration in the rat raphe dorsalis nucleus<br>afterp-chlorophenylalanine administration. II. Anatomical distribution of the<br>tryptophan-5-hydroxylase protein and regional variation of its turnover rate. Brain Research, 1990,<br>536, 46-55. | 1.1 | 32        |
| 59 | The immunolysis, isolation, and properties of subpopulations of mammalian brain synaptosomes.<br>Neurochemical Research, 1989, 14, 301-310.                                                                                                                                                  | 1.6 | 9         |
| 60 | Formal Demonstration of the Phosphorylation of Rat Brain Tryptophan Hydroxylase by<br>Ca2+/Calmodulin-Dependent Protein Kinase. Journal of Neurochemistry, 1989, 52, 1886-1891.                                                                                                              | 2.1 | 75        |
| 61 | ?-Hydroxybutyrate Stimulation of the Formation of Cyclic GMP and Inositol Phosphates in Rat<br>Hippocampal Slices. Journal of Neurochemistry, 1989, 52, 1382-1387.                                                                                                                           | 2.1 | 43        |
| 62 | Localization studies of Î <sup>3</sup> -hydroxybutyrate receptors in rat striatum and hippocampus. Brain Research<br>Bulletin, 1989, 23, 129-135.                                                                                                                                            | 1.4 | 15        |
| 63 | A rapid and sensitive method for the determination of γ-hydroxybutyric acid<br>andtrans-γ-hydroxycrotonic acid in rat brain tissue by gas chromatography/mass spectrometry with<br>negative ion detection. Biomedical & Environmental Mass Spectrometry, 1988, 15, 521-524.                  | 1.6 | 14        |
| 64 | Is the anticonvulsant mechanism of valproate linked to its interaction with the cerebral Î <sup>3</sup> -hydroxybutyrate system?. Trends in Pharmacological Sciences, 1988, 9, 127-129.                                                                                                      | 4.0 | 29        |
| 65 | Gamma hydroxybutyrate distribution and turnover rates in discrete brain regions of the rat.<br>Neurochemistry International, 1988, 12, 53-59.                                                                                                                                                | 1.9 | 66        |
| 66 | Sequence of Two mRNAs Encoding Active Rat Tryptophan Hydroxylase. Journal of Neurochemistry,<br>1988, 51, 312-316.                                                                                                                                                                           | 2.1 | 125       |
| 67 | Analogs of .gammahydroxybutyric acid. Synthesis and binding studies. Journal of Medicinal<br>Chemistry, 1988, 31, 893-897.                                                                                                                                                                   | 2.9 | 63        |
| 68 | Regional differences in depolarization-induced release of Î <sup>3</sup> -hydroxybutyrate from rat brain slices.<br>Neuroscience Letters, 1988, 87, 99-103.                                                                                                                                  | 1.0 | 21        |
| 69 | Function of <i><math>\hat{I}^3</math></i> -hydroxybutyrate: a putative neurotransmitter. Biochemical Society Transactions, 1987, 15, 215-217.                                                                                                                                                | 1.6 | 18        |
| 70 | Regional distribution in rat brain of tryptophan hydroxylase apoenzyme determined by enzyme-linked<br>immunoassay. Neuroscience Letters, 1987, 73, 71-76.                                                                                                                                    | 1.0 | 14        |
| 71 | 3′–5′ cyclic-guanosine monophosphate increase in rat brain hippocampus after gamma-hydroxybutyrate administration. Prevention by valproate and naloxone. Life Sciences, 1987, 41, 605-610.                                                                                                   | 2.0 | 34        |
| 72 | Gamma-hydroxybutyrate, a possible neurotransmitter. Life Sciences, 1987, 41, 1547-1557.                                                                                                                                                                                                      | 2.0 | 168       |

| #  | Article                                                                                                                                                                                                                                                          | lF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Immunohistochemistry of tryptophan hydroxylase in the rat brain. Neuroscience, 1987, 23, 291-304.                                                                                                                                                                | 1.1 | 85        |
| 74 | Î <sup>3</sup> -Aminobutyric acid and 5-hydroxytryptamine interrelationship in the rat nucleus raphe dorsalis:<br>Combination of radioautographic and immunocytochemical techniques at light and electron<br>microscopy levels. Neuroscience, 1987, 21, 237-251. | 1.1 | 112       |
| 75 | Effect of Anticonvulsant Drugs on 7-Hydroxybutyrate Release from Hippocampal Slices: Inhibition by<br>Valproate and Ethosuximide. Journal of Neurochemistry, 1987, 49, 1022-1024.                                                                                | 2.1 | 12        |
| 76 | Regional Distribution of High-Affinity ?-[3H] Hydroxybutyrate Binding Sites as Determined by Quantitative Autoradiography. Journal of Neurochemistry, 1987, 49, 1025-1032.                                                                                       | 2.1 | 57        |
| 77 | Isolation of a rat pineal gland cDNA clone homologous to tyrosine and phenylalanine hydroxylases.<br>FEBS Letters, 1986, 206, 43-46.                                                                                                                             | 1.3 | 36        |
| 78 | ?-Hydroxybutyrate uptake by rat brain striatal slices. Neurochemical Research, 1985, 10, 387-396.                                                                                                                                                                | 1.6 | 42        |
| 79 | Conversion of ?-Hydroxybutyrate to ?-Aminobutyrate In Vitro. Journal of Neurochemistry, 1985, 45, 810-814.                                                                                                                                                       | 2.1 | 57        |
| 80 | Tryptophan 5-hydroxylase. Rapid purification from whole rat brain and production of a specific antiserum. FEBS Journal, 1985, 149, 239-245.                                                                                                                      | 0.2 | 71        |
| 81 | Natural occurrence of trans-gamma hydroxycrotonic acid in rat brain. Biochemical Pharmacology, 1985, 34, 2401-2404.                                                                                                                                              | 2.0 | 20        |
| 82 | Specific immunolysis of serotonergic nerve terminals using an antiserum against tryptophan<br>hydroxylase. FEBS Letters, 1985, 182, 489-492.                                                                                                                     | 1.3 | 11        |
| 83 | Evidence for a role of high K m aldehyde reductase in the degradation of endogenous<br>γ-hydroxybutyrate from rat brain. FEBS Letters, 1985, 190, 55-60.                                                                                                         | 1.3 | 23        |
| 84 | A comparative study of L[3H]-glutamate and L[3H]-cysteine sulfinate binding sites in subcellular fractions of rat brain. Journal of Neuroscience Research, 1984, 11, 157-169.                                                                                    | 1.3 | 12        |
| 85 | Immunocytochemical evidence for the presence of enzymes synthesizing GABA and GHB in the same neuron. Neurochemistry International, 1984, 6, 333-338.                                                                                                            | 1.9 | 11        |
| 86 | Depolarization-Evoked Release of Î <sup>3</sup> -Hydroxybutyrate from Rat Brain Slices. Journal of Neurochemistry,<br>1983, 41, 287-290.                                                                                                                         | 2.1 | 50        |
| 87 | Positive cooperativity in high affinity binding sites for ?-hydroxybutyric acid in rat brain.<br>Neurochemical Research, 1983, 8, 113-120.                                                                                                                       | 1.6 | 11        |
| 88 | Immunohistochemical evidence for neuronal and non-neuronal synthesis of GABA in the rat subcommissural organ. Neurochemistry International, 1983, 5, 785-791.                                                                                                    | 1.9 | 17        |
| 89 | Immunohistochemical evidence for the presence of Î <sup>3</sup> -aminobutyric acid and serotonin in one nerve cell. A study on the raphe nuclei of the rat using antibodies to glutamate decarboxylase and serotonin. Brain Research, 1983, 275, 329-339.        | 1.1 | 205       |
| 90 | Subcellular distribution of Î <sup>3</sup> -Hydroxybutyrate binding sites in rat brain principal localization in the synaptosomal fraction. Biochemical and Biophysical Research Communications, 1983, 110, 262-265.                                             | 1.0 | 43        |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Immunocytochemical localization in rat brain of the enzyme that synthesizes Î <sup>3</sup> -hydroxybutyric acid.<br>Neurochemistry International, 1982, 4, 523-529.                                      | 1.9 | 23        |
| 92  | A radioautographic and immunocytochemical study of the GABA systems of the habenula complex in the rat. Neurochemistry International, 1982, 4, 303-312.                                                  | 1.9 | 13        |
| 93  | Immunocytochemical evidence for the existence of GABAergic neurons in the nucleus raphe dorsalis.<br>possible existence of neurons containing serotonin and GABA. Brain Research, 1982, 232, 375-389.    | 1.1 | 142       |
| 94  | High affinity binding site for γ-hydroxybutyric acid in rat brain. Life Sciences, 1982, 30, 953-961.                                                                                                     | 2.0 | 191       |
| 95  | Ontogeny and distribution of specific succinic semialdehyde reductase apoenzyme in the rat brain.<br>Neurochemical Research, 1982, 7, 555-561.                                                           | 1.6 | 13        |
| 96  | A High-Affinity, Na+-Dependent Uptake System for ?-Hydroxybutyrate in Membrane Vesicles Prepared<br>from Rat Brain. Journal of Neurochemistry, 1982, 38, 1570-1575.                                      | 2.1 | 80        |
| 97  | Evidence that a specific succinic semialdehyde reductase is responsible for λ-hydroxybutyrate synthesis<br>in brain tissue slices. FEBS Letters, 1981, 134, 96-98.                                       | 1.3 | 39        |
| 98  | Multiple effects of repeated administration of γ-acetylenic gaba on rat brain metabolism. Biochemical<br>Pharmacology, 1981, 30, 305-312.                                                                | 2.0 | 11        |
| 99  | Regional and Subcellular Localization in Rat Brain of the Enzymes That Can Synthesize<br>?-Hydroxybutyric Acid. Journal of Neurochemistry, 1981, 36, 1433-1438.                                          | 2.1 | 58        |
| 100 | Glutamate decarboxylase activity in brain regions of differentially-housed mice; a difference in the olfactory bulb. Experientia, 1980, 36, 853-854.                                                     | 1.2 | 4         |
| 101 | Turnover Numbers of ?-Aminobutyrate Aminotransferase in Some Regions of Rat Brain. Journal of Neurochemistry, 1980, 34, 293-296.                                                                         | 2.1 | 12        |
| 102 | Brucella endocarditis on double valvular prosthesis Postgraduate Medical Journal, 1980, 56, 119-120.                                                                                                     | 0.9 | 21        |
| 103 | Specific and non-specific succinic semialdehyde reductases from rat brain: Isolation and properties.<br>FEBS Letters, 1980, 117, 111-116.                                                                | 1.3 | 57        |
| 104 | Rapid purification by affinity chromatography of rat brain pyridoxal kinase and<br>pyridoxamine-5-phosphate oxidase. Biochemical and Biophysical Research Communications, 1980, 96,<br>1755-1760.        | 1.0 | 31        |
| 105 | Antiserum to gangliosides inhibits [3H]GABA binding to a synaptosome-enriched fraction of rat cerebral cortex. General Pharmacology, 1980, 11, 251-254.                                                  | 0.7 | 12        |
| 106 | Comparison of high-affinity binding of [3H]GABA to subcellular particles of rat brain and liver.<br>Neurochemical Research, 1979, 4, 365-376.                                                            | 1.6 | 5         |
| 107 | PURIFICATION FROM HUMAN BRAIN AND SOME PROPERTIES OF TWO NADPH-LINKED ALDEHYDE REDUCTASES<br>WHICH REDUCE SUCCINIC SEMIALDEHYDE TO 4-HYDROXYBUTYRATE. Journal of Neurochemistry, 1979, 33,<br>1169-1175. | 2.1 | 92        |
| 108 | A difference in glutamate-decarboxylase activity between isolated and grouped mice. Journal of Neurochemistry, 1979, 32, 1357-1359.                                                                      | 2.1 | 29        |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Apoenzyme concentration and turnover number of l-glutamate decarboxylase in some regions of rat brain. Journal of Neurochemistry, 1979, 32, 245-246.                                                                                               | 2.1 | 16        |
| 110 | Bicuculline-sensitive GABA binding to a synaptosome-enriched fraction of rat cerebral cortex in the presence of a physiological concentration of sodium. General Pharmacology, 1979, 10, 193-194.                                                  | 0.7 | 2         |
| 111 | Bicuculline-sensitive Î <sup>3</sup> -aminobutyrate binding processes in a synaptosome-enriched fraction of rat cerebral cortex. Neuroscience, 1979, 4, 897-912.                                                                                   | 1.1 | 20        |
| 112 | Purification and Some Properties of I-Glutamate Decarboxylase from Human Brain. FEBS Journal, 1978,<br>86, 143-152.                                                                                                                                | 0.2 | 124       |
| 113 | Comparison of the structures of L-glutamate decarboxylases from human and rat brains. Biochemical and Biophysical Research Communications, 1978, 85, 885-890.                                                                                      | 1.0 | 39        |
| 114 | Comparison of the structural characteristics of the 4-aminobutyrate:2-oxoglutarate transaminases<br>from rat and human brain, and of their affinities for certain inhibitors. Biochimica Et Biophysica Acta -<br>Biomembranes, 1978, 522, 385-399. | 1.4 | 38        |
| 115 | Purification and properties of two succinate semialdehyde dehydrogenases from human brain.<br>Biochimica Et Biophysica Acta - Biomembranes, 1978, 524, 26-36.                                                                                      | 1.4 | 28        |
| 116 | Purification and properties of rat brain succinic semialdehyde dehydrogenase. Biochimie, 1977, 59, 257-268.                                                                                                                                        | 1.3 | 29        |
| 117 | In vitro studies into the effect of inhibition of rat brain succinic semialdehyde dehydrogenase on<br>GABA synthesis and degradation. FEBS Letters, 1976, 72, 53-57.                                                                               | 1.3 | 41        |
| 118 | Effects of 2-propyl 2-pentenoic acid on the acquisition of conditioned behavior with negative reinforcement in mice. Psychopharmacology, 1976, 50, 53-54.                                                                                          | 1.5 | 4         |
| 119 | Purification and Studies on Some Properties of the 4-Aminobutyrate: 2-Oxoglutarate Transaminase from Rat Brain. FEBS Journal, 1975, 52, 157-169.                                                                                                   | 0.2 | 73        |
| 120 | Regional distribution in brain and effect of cerebral mitochondrial respiration of the anticonvulsive drug n-diproylacetate. Biochemical Pharmacology, 1975, 24, 1055-1058.                                                                        | 2.0 | 31        |
| 121 | Protective effect of adenosine and nicotinamide against audiogenic seizure. Biochemical Pharmacology, 1974, 23, 2807-2816.                                                                                                                         | 2.0 | 165       |
| 122 | Effect of 2-methyl 2-ethyl caproic acid and 2-2-dimethyl valeric acid on audiogenic seizures and brain gamma aminobutyric acid. Biochemical Pharmacology, 1974, 23, 2363-2368.                                                                     | 2.0 | 32        |
| 123 | Purification and partial characterisation of 4-aminobutyrate 2-ketoglutarate transaminase from human brain. FEBS Letters, 1974, 47, 199-203.                                                                                                       | 1.3 | 32        |
| 124 | Effect of sodium n-dipropylacetate on audiogenic seizures and brain Î <sup>3</sup> -aminobutyric acid level.<br>Biochemical Pharmacology, 1973, 22, 1701-1708.                                                                                     | 2.0 | 292       |