Zhaoxin Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7888641/publications.pdf Version: 2024-02-01

ΖΗΛΟΧΙΝ ΥΠ

#	Article	IF	CITATIONS
1	Early Failure of Lithium–Sulfur Batteries at Practical Conditions: Crosstalk between Sulfur Cathode and Lithium Anode. Advanced Science, 2022, 9, e2201640.	5.6	12
2	A Lithium Feedstock Pathway: Coupled Electrochemical Extraction and Direct Battery Materials Manufacturing. ACS Energy Letters, 2022, 7, 2420-2427.	8.8	9
3	Enhancing Moisture Stability of Sulfide Solid-State Electrolytes by Reversible Amphipathic Molecular Coating. ACS Applied Materials & Interfaces, 2022, 14, 32035-32042.	4.0	5
4	Amorphous phosphorus-carbon nanotube hybrid anode with ultralong cycle life and high-rate capability for lithium-ion batteries. Carbon, 2019, 148, 518-524.	5.4	65
5	Synthesis and understanding of Na11Sn2PSe12 with enhanced ionic conductivity for all-solid-state Na-ion battery. Energy Storage Materials, 2019, 17, 70-77.	9.5	42
6	A quaternary sodium superionic conductor - Na10.8Sn1.9PS11.8. Nano Energy, 2018, 47, 325-330.	8.2	55
7	Saltâ€Based Organic–Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li ₁₀ GeP ₂ S ₁₂ Solid Electrolyte Interface. Angewandte Chemie - International Edition, 2018, 57, 13608-13612.	7.2	138
8	Saltâ€Based Organic–Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li 10 GeP 2 S 12 Solid Electrolyte Interface. Angewandte Chemie, 2018, 130, 13796-13800.	1.6	5
9	A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 6959-6966.	4.0	65
10	Exceptionally High Ionic Conductivity in Na ₃ P _{0.62} As _{0.38} S ₄ with Improved Moisture Stability for Solidâ€State Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1605561.	11.1	164
11	Origin of Outstanding Phase and Moisture Stability in a Na ₃ P _{1–<i>x</i>} As _{<i>x</i>} S ₄ Superionic Conductor. ACS Applied Materials & Interfaces, 2017, 9, 16261-16269.	4.0	46
12	High capacity of lithium-sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte. Nano Energy, 2017, 31, 418-423.	8.2	83
13	Advanced anode for sodium-ion battery with promising long cycling stability achieved by tuning phosphorus-carbon nanostructures. Nano Energy, 2017, 40, 550-558.	8.2	99
14	Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 4231-4235.	7.2	149
15	Roomâ€Temperature Synthesis of Mesoporous Sn/SnO ₂ Composite as Anode for Sodiumâ€Ion Batteries. European Journal of Inorganic Chemistry, 2016, 2016, 1950-1954.	1.0	23
16	Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 4303-4307.	1.6	35
17	Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium–Sulfur Batteries. Nano Letters, 2016, 16, 864-870.	4.5	531
18	Phosphorusâ€Graphene Nanosheet Hybrids as Lithiumâ€lon Anode with Exceptional Highâ€Temperature Cycling Stability. Advanced Science, 2015, 2, 1400020.	5.6	214

#	Article	IF	CITATIONS
19	Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogenâ€Đoped Carbon Composites For Highâ€Performance Lithium–Sulfur Battery Cathodes. Angewandte Chemie - International Edition, 2015, 54, 4325-4329.	7.2	686
20	Ti-substituted Li[Li _{0.26} Mn _{0.6â^'x} Ti _x Ni _{0.07} Co _{0.07}]O _{2< cathode material with improved structural stability and suppressed voltage fading. Journal of Materials Chemistry A, 2015, 3, 17376-17384.}	syb>laye	red 40
21	Advanced Sodium Ion Battery Anode Constructed <i>via</i> Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder. ACS Nano, 2015, 9, 11933-11941.	7.3	255
22	Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium-Ion Batteries. Nano Letters, 2014, 14, 6329-6335.	4.5	434
23	Flexible freestanding sandwich-structured sulfur cathode with superior performance for lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 8623-8627.	5.2	87
24	Interpenetrated Gel Polymer Binder for Highâ€Performance Silicon Anodes in Lithiumâ€ion Batteries. Advanced Functional Materials, 2014, 24, 5904-5910.	7.8	459
25	Mesoporous Carbon–Carbon Nanotube–Sulfur Composite Microspheres for High-Areal-Capacity Lithium–Sulfur Battery Cathodes. ACS Applied Materials & Interfaces, 2013, 5, 11355-11362.	4.0	230
26	Controllable synthesis: Bi2S3 nanostructure powders and highly textured polycrystals. CrystEngComm, 2012, 14, 2283.	1.3	41
27	Synthesis and Thermoelectric Properties of LAST System Bulk Materials: Substitution of Sulfur for Tellurium. Journal of Electronic Materials, 2012, 41, 1337-1342.	1.0	6
28	Effect of spark plasma sintering temperature on thermoelectric properties of Bi ₂ S ₃ polycrystal. Journal of Materials Research, 2011, 26, 2711-2718.	1.2	48
29	A Raman spectroscopy investigation of the interactions of LiBOB with γ-BL as electrolyte for advanced lithium batteries. Journal of Power Sources, 2010, 195, 4285-4289.	4.0	21
30	Study on Î ³ -butyrolactone for LiBOB-based electrolytes. Journal of Power Sources, 2009, 189, 458-461.	4.0	50

ZHAOXIN YU