DanuÅje TarkowskÃj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7888516/publications.pdf

Version: 2024-02-01

109137 102304 4,959 87 35 66 citations g-index h-index papers 91 91 91 6207 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8039-8044.	3.3	497
2	Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16598-16603.	3.3	485
3	Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. Plant Physiology, 2018, 177, 476-489.	2.3	293
4	UHPLC–MS/MS based target profiling of stress-induced phytohormones. Phytochemistry, 2014, 105, 147-157.	1.4	184
5	<i>DELAY OF GERMINATION 1</i> i> mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3571-80.	3.3	175
6	Abscisic acid, gibberellins and brassinosteroids in Kelpak \hat{A}^{o} , a commercial seaweed extract made from Ecklonia maxima. Journal of Applied Phycology, 2014, 26, 561-567.	1.5	155
7	Quantitative analysis of cytokinins in plants by liquid chromatography–single-quadrupole mass spectrometry. Analytica Chimica Acta, 2003, 480, 207-218.	2.6	146
8	Analysis of gibberellins as free acids by ultra performance liquid chromatography–tandem mass spectrometry. Talanta, 2013, 112, 85-94.	2.9	138
9	Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. Nature Plants, 2016, 2, 16013.	4.7	135
10	Comparative "Omics―of the <i>Fusarium fujikuroi</i> Species Complex Highlights Differences in Genetic Potential and Metabolite Synthesis. Genome Biology and Evolution, 2016, 8, 3574-3599.	1,1	124
11	The Arabidopsis AtIPT8/PGA22 Gene Encodes an Isopentenyl Transferase That Is Involved in De Novo Cytokinin Biosynthesis. Plant Physiology, 2003, 131, 167-176.	2.3	119
12	Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta, 2017, 245, 15-30.	1.6	119
13	Hormone profiles in microalgae: Gibberellins and brassinosteroids. Plant Physiology and Biochemistry, 2013, 70, 348-353.	2.8	108
14	Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga <i><scp>N</scp>annochloropsis oceanica</i> expand the evolutionary breadth of phytohormone function. Plant Journal, 2014, 80, 52-68.	2.8	101
15	Derivatization for LC-Electrospray Ionization-MS:Â A Tool for Improving Reversed-Phase Separation and ESI Responses of Bases, Ribosides, and Intact Nucleotides. Analytical Chemistry, 2004, 76, 2869-2877.	3.2	89
16	Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus $\hat{a} \in f\tilde{A} - \hat{a} \in f$ canadensis leaves by LC-(+)ESI-MS and capillary liquid chromatography/frit-fast atom bombardment mass spectrometry. Physiologia Plantarum, 2003, 117, 579-590.	2.6	83
17	Activity of the Brassinosteroid Transcription Factors BRASSINAZOLE RESISTANT1 and BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1/BRASSINAZOLE RESISTANT2 Blocks Developmental Reprogramming in Response to Low Phosphate Availability Â. Plant Physiology, 2014, 166, 678-688.	2.3	77
18	Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiology and Biochemistry, 2014, 79, 66-76.	2.8	77

#	Article	IF	CITATIONS
19	Gibberellin–Abscisic Acid Balances during Arbuscular Mycorrhiza Formation in Tomato. Frontiers in Plant Science, 2016, 7, 1273.	1.7	75
20	Quo vadis plant hormone analysis?. Planta, 2014, 240, 55-76.	1.6	72
21	Myrigalone A Inhibits Lepidium sativum Seed Germination by Interference with Gibberellin Metabolism and Apoplastic Superoxide Production Required for Embryo Extension Growth and Endosperm Rupture. Plant and Cell Physiology, 2012, 53, 81-95.	1.5	64
22	Evidence of phytohormones and phenolic acids variability in garden-waste-derived vermicompost leachate, a well-known plant growth stimulant. Plant Growth Regulation, 2015, 75, 483-492.	1.8	58
23	Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance. Planta, 2018, 247, 1051-1066.	1.6	56
24	The determination of 22 natural brassinosteroids in a minute sample of plant tissue by UHPLC–ESl–MS/MS. Analytical and Bioanalytical Chemistry, 2016, 408, 6799-6812.	1.9	55
25	Brassinosteroid Biosynthesis Is Modulated via a Transcription Factor Cascade of COG1, PIF4, and PIF5. Plant Physiology, 2017, 174, 1260-1273.	2.3	55
26	Tomato MYB21 Acts in Ovules to Mediate Jasmonate-Regulated Fertility. Plant Cell, 2019, 31, 1043-1062.	3.1	55
27	Early Brassica Crops Responses to Salinity Stress: A Comparative Analysis Between Chinese Cabbage, White Cabbage, and Kale. Frontiers in Plant Science, 2019, 10, 450.	1.7	54
28	Correlations between Phytohormones and Drought Tolerance in Selected Brassica Crops: Chinese Cabbage, White Cabbage and Kale. International Journal of Molecular Sciences, 2018, 19, 2866.	1.8	53
29	SPINDLY inhibits class I TCP proteolysis to promote sensitivity to cytokinin. Plant Physiology, 2016, 171, pp.00343.2016.	2.3	49
30	A qualitative continuous model of cellular auxin and brassinosteroid signaling and their crosstalk. Bioinformatics, 2011, 27, 1404-1412.	1.8	44
31	Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones. Planta, 2016, 244, 545-555.	1.6	42
32	Inhibition of gibberellin accumulation by water deficiency promotes fast and longâ€ŧerm â€~drought avoidance' responses in tomato. New Phytologist, 2021, 232, 1985-1998.	3.5	42
33	Cytokinins in shoot apices of Brassica napus plants during vernalization. Plant Science, 2012, 187, 105-112.	1.7	41
34	Role of gibberellins during arbuscular mycorrhizal formation in tomato: new insights revealed by endogenous quantification and genetic analysis of their metabolism in mycorrhizal roots. Physiologia Plantarum, 2015, 154, 66-81.	2.6	41
35	Ethylene promotes hyponastic growth through interaction with ROTUNDIFOLIA3/CYP90C1 in Arabidopsis. Journal of Experimental Botany, 2013, 64, 613-624.	2.4	40
36	Impact of end-of-day red and far-red light on plant morphology and hormone physiology of poinsettia. Scientia Horticulturae, 2014, 174, 77-86.	1.7	40

#	Article	IF	CITATIONS
37	Long-range mobile signals mediate seasonal control of shoot growth. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10852-10857.	3.3	40
38	Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco. Plant Journal, 2020, 103, 1967-1984.	2.8	39
39	Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone A. Journal of Experimental Botany, 2012, 63, 5337-5350.	2.4	38
40	A previously undescribed jasmonate compound in flowering Arabidopsis thaliana – The identification of cis-(+)-OPDA-lle. Phytochemistry, 2016, 122, 230-237.	1.4	38
41	Immunoaffinity chromatography combined with tandem mass spectrometry: A new tool for the selective capture and analysis of brassinosteroid plant hormones. Talanta, 2017, 170, 432-440.	2.9	37
42	PHABULOSA Controls the Quiescent Center-Independent Root Meristem Activities in Arabidopsis thaliana. PLoS Genetics, 2015, 11, e1004973.	1.5	35
43	Plants are Capable of Synthesizing Animal Steroid Hormones. Molecules, 2019, 24, 2585.	1.7	35
44	<i>BRX</i> promotes Arabidopsis shoot growth. New Phytologist, 2010, 188, 23-29.	3.5	34
45	Drought-tolerant and drought-sensitive genotypes of maize (Zea mays L.) differ in contents of endogenous brassinosteroids and their drought-induced changes. PLoS ONE, 2018, 13, e0197870.	1.1	34
46	Aethionema arabicum: a novel model plant to study the light control of seed germination. Journal of Experimental Botany, 2019, 70, 3313-3328.	2.4	31
47	Production and Role of Hormones During Interaction of Fusarium Species With Maize (Zea mays L.) Seedlings. Frontiers in Plant Science, 2018, 9, 1936.	1.7	30
48	The DAG1 transcription factor negatively regulates the seed-to-seedling transition in Arabidopsis acting on ABA and GA levels. BMC Plant Biology, 2016, 16, 198.	1.6	28
49	Cytokinin metabolism in maize: Novel evidence of cytokinin abundance, interconversions and formation of a new trans-zeatin metabolic product with a weak anticytokinin activity. Plant Science, 2016, 247, 127-137.	1.7	25
50	Dual Role of Gibberellin in Perennial Shoot Branching: Inhibition and Activation. Frontiers in Plant Science, 2020, 11, 736.	1.7	25
51	Cytokinins in the perianth, carpels, and developing fruit of Helleborus niger L Journal of Experimental Botany, 2006, 57, 2237-2247.	2.4	24
52	Hormone-mediated growth dynamics of the barley pericarp as revealed by magnetic resonance imaging and transcript profiling. Journal of Experimental Botany, 2015, 66, 6927-6943.	2.4	24
53	Carbohydrates and gibberellins relationship in potato tuberization. Journal of Plant Physiology, 2017, 214, 53-63.	1.6	24
54	Endogenous brassinosteroids in microalgae exposed to salt and low temperature stress. European Journal of Phycology, 2018, 53, 273-279.	0.9	23

#	Article	IF	Citations
55	Gibberellin-to-abscisic acid balances govern development and differentiation of the nucellar projection of barley grains. Journal of Experimental Botany, 2014, 65, 5291-5304.	2.4	22
56	Fast Regulation of Hormone Metabolism Contributes to Salt Tolerance in Rice (Oryza sativa spp.) Tj ETQq0 0 0 r	gBT/Over	lock 10 Tf 50 7
57	Lycopene \hat{l}^2 -cyclase expression influences plant physiology, development, and metabolism in tobacco plants. Journal of Experimental Botany, 2021, 72, 2544-2569.	2.4	21
58	When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in <i>Aethionema</i> . Plant Journal, 2018, 94, 352-371.	2.8	20
59	The Response of Maize to Inoculation with Arthrobacter sp. and Bacillus sp. in Phosphorus-Deficient, Salinity-Affected Soil. Microorganisms, 2020, 8, 1005.	1.6	20
60	Determination of the first dissociation constant of 6-benzylaminopurine. Analytica Chimica Acta, 2000, 421, 221-229.	2.6	19
61	Vacuole Integrity Maintained by DUF300 Proteins Is Required for Brassinosteroid Signaling Regulation. Molecular Plant, 2018, 11, 553-567.	3.9	18
62	Mal de RÃo Cuarto virus infection causes hormone imbalance and sugar accumulation in wheat leaves. BMC Plant Biology, 2019, 19, 112.	1.6	18
63	Gibberellins – terpenoid plant hormones: Biological importance and chemical analysis. Collection of Czechoslovak Chemical Communications, 2011, 76, 1669-1686.	1.0	17
64	Interplay between cytochrome <i>c</i> and gibberellins during Arabidopsis vegetative development. Plant Journal, 2018, 94, 105-121.	2.8	17
65	Plastidial Phosphoglucose Isomerase Is an Important Determinant of Seed Yield through Its Involvement in Gibberellin-Mediated Reproductive Development and Storage Reserve Biosynthesis in Arabidopsis. Plant Cell, 2018, 30, 2082-2098.	3.1	15
66	Molecular mechanisms and hormonal regulation underpinning morphological dormancy: a case study using <i>Apium graveolens</i> (Apiaceae). Plant Journal, 2021, 108, 1020-1036.	2.8	15
67	Electrochemical Reduction of 6-Benzylaminopurine at Mercury Electrodes and Its Analytical Application. Collection of Czechoslovak Chemical Communications, 2003, 68, 1076-1093.	1.0	12
68	A Fast and Reliable UHPLC–MS/MS-Based Method for Screening Selected Pharmacologically Significant Natural Plant Indole Alkaloids. Molecules, 2020, 25, 3274.	1.7	11
69	The HB40-JUB1 transcriptional regulatory network controls gibberellin homeostasis in Arabidopsis. Molecular Plant, 2022, 15, 322-339.	3.9	11
70	ML3: a novel regulator of herbivory-induced responses in Arabidopsis thaliana. Journal of Experimental Botany, 2013, 64, 935-948.	2.4	10
71	Organâ€specific phytohormone synthesis in two <i>Geranium</i> species with antithetical responses to farâ€red light enrichment. Plant Direct, 2018, 2, e00066.	0.8	10
72	Limited light intensity and low temperature: Can plants survive freezing in light conditions that more accurately replicate the cold season in temperate regions?. Environmental and Experimental Botany, 2021, 190, 104581.	2.0	10

#	Article	IF	CITATIONS
73	Changes in the concentrations and transcripts for gibberellins and other hormones in a growing leaf and roots of wheat seedlings in response to water restriction. BMC Plant Biology, 2022, 22, .	1.6	10
74	Coldâ€induced secondary dormancy and its regulatory mechanisms in <i>Beta vulgaris</i> . Plant, Cell and Environment, 2022, 45, 1315-1332.	2.8	9
75	The effect of exogenous 24-epibrassinolide on the ecdysteroid content in the leaves of Spinacia oleracea L Steroids, 2015, 97, 107-112.	0.8	8
76	Quantitative Analysis of Ingenol in <i>Euphorbia</i> species via Validated Isotope Dilution Ultraâ€high Performance Liquid Chromatography Tandem Mass Spectrometry. Phytochemical Analysis, 2018, 29, 23-29.	1.2	8
77	Pericarp-mediated chemical dormancy controls the fruit germination of the invasive hoary cress (Lepidium draba), but not of hairy whitetop (Lepidium appelianum). Weed Science, 2019, 67, 560-571.	0.8	7
78	The Phytotoxin Myrigalone A Triggers a Phased Detoxification Programme and Inhibits Lepidium sativum Seed Germination via Multiple Mechanisms including Interference with Auxin Homeostasis. International Journal of Molecular Sciences, 2022, 23, 4618.	1.8	6
79	Plant Triterpenoid Crosstalk: The Interaction of Brassinosteroids and Phytoecdysteroids in Lepidium sativum. Plants, 2020, 9, 1325.	1.6	5
80	Comparative mineral and hormonal analyses of wild type and TLS somaclonal variant derived from oil palm (Elaeis guineensis Jacq. var. tenera) tissue culture. Plant Growth Regulation, 2012, 68, 313-317.	1.8	4
81	The Dynamics of Cytokinin Changes after Grafting of Vegetative Apices on Flowering Rapeseed Plants. Plants, 2019, 8, 78.	1.6	4
82	Protocol for Extraction and Isolation of Brassinosteroids from Plant Tissues. Methods in Molecular Biology, 2017, 1564, 1-7.	0.4	2
83	The Arabidopsis RLCK VI_A2 Kinase Controls Seedling and Plant Growth in Parallel with Gibberellin. International Journal of Molecular Sciences, 2020, 21, 7266.	1.8	1
84	Naturally Occurring Ecdysteroids in Triticum aestivum L. and Evaluation of Fenarimol as a Potential Inhibitor of Their Biosynthesis in Plants. International Journal of Molecular Sciences, 2021, 22, 2855.	1.8	1
85	Analysis of ingenol and its conjugates in some species of the Euphorbia genus by ultra-high performance liquid chromatography-tandem mass spectrometry using isotope dilution method. Planta Medica, 2015, 81, .	0.7	1
86	Synthesis and Mass Spectral Fragmentation Patterns of Brassinolide Early Biosynthetic Precursors Labeled at C-26. Natural Product Communications, 2013, 8, 1934578X1300800.	0.2	0
87	Plant hormone metabolite profiling on the tissue and cell level. Planta Medica, 2016, 81, S1-S381.	0.7	0