
## Jon C Petch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7887679/publications.pdf Version: 2024-02-01



LON C PETCH

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Reducing the spinâ€up of a regional NWP system withoutÂdata assimilation. Quarterly Journal of the<br>Royal Meteorological Society, 2022, 148, 1623-1643.                                                                                   | 1.0 | 12        |
| 2  | Sensitivity of the 2018 UK summer heatwave to local sea temperatures and soil moisture. Atmospheric Science Letters, 2020, 21, e948.                                                                                                        | 0.8 | 15        |
| 3  | The first Met Office Unified Model–JULES Regional Atmosphere and Land configuration, RAL1.<br>Geoscientific Model Development, 2020, 13, 1999-2029.                                                                                         | 1.3 | 96        |
| 4  | Evaluating the impact of atmospheric forcing and air–sea coupling on near-coastal regional ocean prediction. Ocean Science, 2019, 15, 761-778.                                                                                              | 1.3 | 9         |
| 5  | Drivers of the UK summer heatwave of 2018. Weather, 2019, 74, 390-396.                                                                                                                                                                      | 0.6 | 46        |
| 6  | How Well Can the Met Office Unified Model Forecast Tropical Cyclones in the Western North Pacific?.<br>Weather and Forecasting, 2018, 33, 185-201.                                                                                          | 0.5 | 17        |
| 7  | CAUSES: Diagnosis of the Summertime Warm Bias in CMIP5 Climate Models at the ARM Southern Great<br>Plains Site. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2968-2992.                                                       | 1.2 | 33        |
| 8  | CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern<br>Great Plains. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3612-3644.                                                     | 1.2 | 62        |
| 9  | Introduction to CAUSES: Description of Weather and Climate Models and Their Nearâ€6urface<br>Temperature Errors in 5Âday Hindcasts Near the Southern Great Plains. Journal of Geophysical<br>Research D: Atmospheres, 2018, 123, 2655-2683. | 1.2 | 53        |
| 10 | CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error<br>Over the Central United States. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2888-2909.                                      | 1.2 | 60        |
| 11 | Moist convection and its upscale effects in simulations of the Indian monsoon with explicit and parametrized convection. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1073-1085.                                       | 1.0 | 41        |
| 12 | Vertical Structure and Diabatic Processes of the Madden-Julian Oscillation. World Scientific Series on Asia-Pacific Weather and Climate, 2017, , 161-172.                                                                                   | 0.2 | 0         |
| 13 | Vertical structure and physical processes of the Maddenâ€Julian oscillation: Exploring key model physics in climate simulations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4718-4748.                                      | 1.2 | 332       |
| 14 | Vertical structure and physical processes of the Maddenâ€Julian Oscillation: Biases and uncertainties at short range. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4749-4763.                                                 | 1.2 | 26        |
| 15 | Vertical structure and physical processes of the Maddenâ€Julian oscillation: Synthesis and summary.<br>Journal of Geophysical Research D: Atmospheres, 2015, 120, 4671-4689.                                                                | 1.2 | 58        |
| 16 | Using regime analysis to identify the contribution of clouds to surface temperature errors in<br>weather and climate models. Quarterly Journal of the Royal Meteorological Society, 2015, 141,<br>3190-3206.                                | 1.0 | 22        |
| 17 | Vertical structure and physical processes of the Maddenâ€Julian oscillation: Linking hindcast fidelity to<br>simulated diabatic heating and moistening. Journal of Geophysical Research D: Atmospheres, 2015, 120,<br>4690-4717.            | 1.2 | 63        |
| 18 | Evaluation of intercomparisons of four different types of model simulating <scp>TWP″CE</scp> .<br>Quarterly Journal of the Royal Meteorological Society, 2014, 140, 826-837.                                                                | 1.0 | 18        |

Jon C Petch

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A singleâ€column model ensemble approach applied to the TWPâ€ICE experiment. Journal of Geophysical<br>Research D: Atmospheres, 2013, 118, 6544-6563.                                                                   | 1.2 | 33        |
| 20 | Diagnosis of regimeâ€dependent cloud simulation errors in CMIP5 models using "Aâ€Train―satellite<br>observations and reanalysis data. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2762-2780.             | 1.2 | 90        |
| 21 | TWP″CE global atmospheric model intercomparison: Convection responsiveness and resolution impact. Journal of Geophysical Research, 2012, 117, .                                                                         | 3.3 | 38        |
| 22 | A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event. Journal of Geophysical Research, 2012, 117, n/a-n/a.                                                           | 3.3 | 27        |
| 23 | Parametrizing the horizontal inhomogeneity of ice water content using CloudSat data products.<br>Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1784-1793.                                           | 1.0 | 20        |
| 24 | Evaluation of two cloud parametrization schemes using ARM and Cloudâ€Net observations. Quarterly<br>Journal of the Royal Meteorological Society, 2012, 138, 964-979.                                                    | 1.0 | 33        |
| 25 | Analysis of prognostic cloud scheme increments in a climate model. Quarterly Journal of the Royal<br>Meteorological Society, 2010, 136, 2061-2073.                                                                      | 1.0 | 15        |
| 26 | Two fast radiative transfer methods to improve the temporal sampling of clouds in numerical<br>weather prediction and climate models. Quarterly Journal of the Royal Meteorological Society, 2009,<br>135, 457-468.     | 1.0 | 47        |
| 27 | Deep Convective Clouds. , 2009, , 197-216.                                                                                                                                                                              |     | 4         |
| 28 | Cloud-controlling Factors. , 2009, , 269-290.                                                                                                                                                                           |     | 2         |
| 29 | Differences in the lower troposphere in two―and threeâ€dimensional cloudâ€resolving model simulations of deep convection. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 1941-1946.                  | 1.0 | 23        |
| 30 | Modelling suppressed and active convection. Comparing a numerical weather prediction,<br>cloudâ€resolving and singleâ€column model. Quarterly Journal of the Royal Meteorological Society,<br>2007, 133, 1087-1100.     | 1.0 | 34        |
| 31 | Daytime convective development over land: A model intercomparison based on LBA observations.<br>Quarterly Journal of the Royal Meteorological Society, 2006, 132, 317-344.                                              | 1.0 | 160       |
| 32 | Sensitivity studies of developing convection in a cloud-resolving model. Quarterly Journal of the<br>Royal Meteorological Society, 2006, 132, 345-358.                                                                  | 1.0 | 63        |
| 33 | The predictability of deep convection in cloud-resolving simulations over land. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 3173-3187.                                                            | 1.0 | 14        |
| 34 | Intercomparison and evaluation of cumulus parametrizations under summertime midlatitude continental conditions. Quarterly Journal of the Royal Meteorological Society, 2002, 128, 1095-1135.                            | 1.0 | 119       |
| 35 | An intercomparison of cloud-resolving models with the Atmospheric Radiation Measurement summer<br>1997 Intensive Observation Period data. Quarterly Journal of the Royal Meteorological Society, 2002,<br>128, 593-624. | 1.0 | 192       |
| 36 | Sensitivity studies using a cloud-resolving model simulation of the tropical west Pacific. Quarterly<br>Journal of the Royal Meteorological Society, 2001, 127, 2287-2306.                                              | 1.0 | 69        |