Carlos Puebla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/788721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Editorial: Free Fatty Acids as Signaling Molecules: Role of Free Fatty Acid Receptors and CD36. Frontiers in Physiology, 2022, 13, 862458.	2.8	1
2	Use of Short-Chain Fatty Acids for the Recovery of the Intestinal Epithelial Barrier Affected by Bacterial Toxins. Frontiers in Physiology, 2021, 12, 650313.	2.8	61
3	Active acetylcholine receptors prevent the atrophy of skeletal muscles and favor reinnervation. Nature Communications, 2020, 11, 1073.	12.8	64
4	Pannexin 1-based channels activity as a novel regulator of multiple sclerosis progression. Neural Regeneration Research, 2020, 15, 65.	3.0	2
5	De novo expression of functional connexins 43 and 45 hemichannels increases sarcolemmal permeability of skeletal myofibers during endotoxemia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2765-2773.	3.8	18
6	Role of Connexin-Based Gap Junction Channels in Communication of Myelin Sheath in Schwann Cells. Frontiers in Cellular Neuroscience, 2019, 13, 69.	3.7	14
7	Regulation of Connexin-Based Channels by Fatty Acids. Frontiers in Physiology, 2017, 8, 11.	2.8	14
8	Connexin hemichannels explain the ionic imbalance and lead to atrophy in denervated skeletal muscles. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2168-2176.	3.8	20
9	Dexamethasone-induced muscular atrophy is mediated by functional expression of connexin-based hemichannels. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1891-1899.	3.8	39
10	Linoleic acid permeabilizes gastric epithelial cells by increasing connexin 43 levels in the cell membrane via a GPR40- and Akt-dependent mechanism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 439-448.	2.4	24
11	Fast skeletal myofibers of mdx mouse, model of Duchenne muscular dystrophy, express connexin hemichannels that lead to apoptosis. Cellular and Molecular Life Sciences, 2016, 73, 2583-2599.	5.4	33
12	Pannexin channels mediate the acquisition of myogenic commitment in C2C12 reserve cells promoted by P2 receptor activation. Frontiers in Cell and Developmental Biology, 2015, 3, 25.	3.7	11
13	Featured Article: Dexamethasone and rosiglitazone are sufficient and necessary for producing functional adipocytes from mesenchymal stem cells. Experimental Biology and Medicine, 2015, 240, 1235-1246.	2.4	51
14	Role of Akt and Ca2+ on cell permeabilization via connexin43 hemichannels induced by metabolic inhibition. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1268-1277.	3.8	18
15	De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16229-16234.	7.1	101
16	Gestational Diabetes Reduces Adenosine Transport in Human Placental Microvascular Endothelium, an Effect Reversed by Insulin. PLoS ONE, 2012, 7, e40578.	2.5	62
17	Connexin- and Pannexin-Based Channels in Normal Skeletal Muscles and Their Possible Role in Muscle Atrophy. Journal of Membrane Biology, 2012, 245, 423-436.	2.1	37
18	Review: Differential placental macrovascular and microvascular endothelial dysfunction in gestational diabetes. Placenta, 2011, 32, S159-S164.	1.5	100

CARLOS PUEBLA

#	Article	IF	CITATIONS
19	Insulin Restores Gestational Diabetes Mellitus–Reduced Adenosine Transport Involving Differential Expression of Insulin Receptor Isoforms in Human Umbilical Vein Endothelium. Diabetes, 2011, 60, 1677-1687.	0.6	101
20	Functional Link Between Adenosine and Insulin: A Hypothesis for Fetoplacental Vascular Endothelial Dysfunction in Gestational Diabetes. Current Vascular Pharmacology, 2011, 9, 750-762.	1.7	21
21	Nitric oxide reduces SLC29A1 promoter activity and adenosine transport involving transcription factor complex hCHOP–C/EBPα in human umbilical vein endothelial cells from gestational diabetes. Cardiovascular Research, 2010, 86, 45-54.	3.8	49
22	TGF-β1 inhibits expression and activity of hENT1 in a nitric oxide-dependent manner in human umbilical vein endothelium. Cardiovascular Research, 2009, 82, 458-467.	3.8	20
23	Equilibrative Nucleoside Transporters in Fetal Endothelial Dysfunction in Diabetes Mellitus and Hyperglycaemia. Current Vascular Pharmacology, 2009, 7, 435-449.	1.7	31
24	Potential Cell Signalling Mechanisms Involved in Differential Placental Angiogenesis in Mild and Severe Pre-Eclampsia. Current Vascular Pharmacology, 2009, 7, 475-485.	1.7	26
25	High <scp>D</scp> â€glucose reduces <i>SLC29A1</i> promoter activity and adenosine transport involving specific protein 1 in human umbilical vein endothelium. Journal of Cellular Physiology, 2008, 215, 645-656.	4.1	27
26	Nitric oxide reduces adenosine transporter ENT1 gene (SLC29A1) promoter activity in human fetal endothelium from gestational diabetes. Journal of Cellular Physiology, 2006, 208, 451-460.	4.1	48