Younes Menni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7887116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of convective heat transfer in smooth air channels with wall-mounted obstacles in the flow path. Journal of Thermal Analysis and Calorimetry, 2019, 135, 1951-1976.	3.6	78
2	COMPUTATIONAL THERMAL ANALYSIS OF TURBULENT FORCED-CONVECTION FLOW IN AN AIR CHANNEL WITH A FLAT RECTANGULAR FIN AND DOWNSTREAM V-SHAPED BAFFLE. Heat Transfer Research, 2019, 50, 1781-1818.	1.6	38
3	Modeling and analysis of solar air channels with attachments of different shapes. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 1815-1845.	2.8	34
4	Numerical calculations of the thermal-aerodynamic characteristics in a solar duct with multiple V-baffles. Engineering Applications of Computational Fluid Mechanics, 2020, 14, 1173-1197.	3.1	29
5	Combination of baffling technique and high-thermal conductivity fluids to enhance the overall performances of solar channels. Engineering With Computers, 2022, 38, 607-628.	6.1	27
6	Enhancement of the turbulent convective heat transfer in channels through the baffling technique and oil/multiwalled carbon nanotube nanofluids. Numerical Heat Transfer; Part A: Applications, 2021, 79, 311-351.	2.1	27
7	Laminar cooling of shear thinning fluids in horizontal and baffled tubes: Effect of perforation in baffles. Thermal Science and Engineering Progress, 2019, 14, 100430.	2.7	26
8	Advances of nanofluids in heat exchangers—A review. Heat Transfer, 2020, 49, 4321-4349.	3.0	25
9	Nature-based solutions to improve the summer thermal comfort outdoors. Case Studies in Thermal Engineering, 2021, 28, 101399.	5.7	23
10	Study of Heat and Mass Transfer Through an Earth to Air Heat Exchanger Equipped with Fan in South West of Algeria. International Journal of Heat and Technology, 2019, 37, 689-695.	0.6	19
11	New passive thermal comfort system using three renewable energies: Wind catcher, solar chimney and earth to air heat exchanger integrated to <scp>realâ€scale</scp> test room in arid region (Experimental) Tj ETQq	1 4.5 .784	13 1⊮4 rgBT /⊂
12	Study of air flow around flat and arc-shaped baffles in shell-and-tube heat exchangers. Mathematical Modelling of Engineering Problems, 2019, 6, 77-84.	0.5	18
13	Heat and mass transfer of oils in baffled and finned ducts. Thermal Science, 2020, 24, 267-276.	1.1	18
14	DESIGN AND PERFORMANCE EVALUATION OF AIR SOLAR CHANNELS WITH DIVERSE BAFFLE STRUCTURES. Computational Thermal Sciences, 2018, 10, 225-249.	0.9	17
15	Experimental study of an earth-to-air heat exchanger coupled to the solar chimney for heating and cooling applications in arid regions. Journal of Thermal Analysis and Calorimetry, 2021, 145, 3349-3358.	3.6	16
16	Earth to Air Heat Exchanger and Its Applications in Arid Regions - An Updated Review. Tecnica Italiana, 2020, 64, 83-90.	0.2	16
17	Aerodynamics and Heat Transfer over Solid-Deflectors in Transverse, Staggered, Corrugated-Upstream and Corrugated-Downstream Patterns. Periodica Polytechnica, Mechanical Engineering, 2018, 62, 209-217.	1.4	15
18	COMPUTATIONAL FLUID DYNAMICAL ANALYSIS OF NEW OBSTACLE DESIGN AND ITS IMPACT ON THE HEAT TRANSFER ENHANCEMENT IN A SPECIFIC TYPE OF AIR FLOW GEOMETRY. Computational Thermal Sciences, 2018, 10, 421-447.	0.9	15

YOUNES MENNI

#	Article	IF	CITATIONS
19	Effects of in-line deflectors on the overall performance of a channel heat exchanger. Engineering Applications of Computational Fluid Mechanics, 2021, 15, 512-529.	3.1	13
20	Outdoor Thermal Comfort Optimization through Vegetation Parameterization: Species and Tree Layout. Sustainability, 2021, 13, 11791.	3.2	12
21	Improvement of the performance of solar channels by using vortex generators and hydrogen fluid. Journal of Thermal Analysis and Calorimetry, 2022, 147, 545-566.	3.6	11
22	A New Configuration of Vertically Connecting Solar Cells: Solar Tree. International Journal of Photoenergy, 2020, 2020, 1-8.	2.5	10
23	Computational fluid dynamic simulations and heat transfer characteristic comparisons of various arc-baffled channels. Open Physics, 2021, 19, 51-60.	1.7	9
24	Aerodynamic Fields inside S-Shaped Baffled-Channel Air-Heat Exchangers. Mathematical Problems in Engineering, 2021, 2021, 1-11.	1.1	9
25	Estimation of the Wind Energy Potential in Various North Algerian Regions. Energies, 2021, 14, 7564.	3.1	8
26	Improvement and Nocturnal Extension of the Efficiency of a Solar Still. International Journal of Photoenergy, 2021, 2021, 1-11.	2.5	6
27	Wind Energy Resource Assessment in South Western of Algeria. Mathematical Modelling of Engineering Problems, 2019, 6, 157-162.	0.5	5
28	Different scenarios to enhance thermal comfort by renewable-ecological techniques in hot dry environment. Case Studies in Thermal Engineering, 2022, 32, 101886.	5.7	5
29	Comparison between the thermoelectric properties of new materials: The alloy of iron, vanadium, tungsten, and aluminum (Fe2V0.8W0.2Al) against an oxide such as NaCO2O4. Optik, 2021, 247, 168035.	2.9	4
30	Enhanced Outdoor Thermal Comfort Through Natural Design Technique: In-Situ Measurement and Microclimate Simulation. Instrumentation Mesure Metrologie, 2021, 20, 131-136.	0.3	3
31	Energy analysis of the performance of a hybrid solar still composed of a parabolic concentrator with PV generator. SN Applied Sciences, 2021, 3, 1.	2.9	2
32	Effect of Various Physical Parameters on the Productivity of the Hybrid Distiller - In the Time of Distillation Extension at Night. European Journal of Electrical Engineering, 2019, 21, 265-271.	0.3	2
33	Thermal analysis for an experimental study of a cylindrical vertical solar chimney with internal PVC obstacles. International Journal of Low-Carbon Technologies, 2021, 16, 664-671.	2.6	1
34	Assessment of the Resources of Wind Energy in Various Regions of Algeria. International Journal of Sustainable Development and Planning, 2021, 16, 641-650.	0.7	1
35	Heat and mass transfer of oils in baffled and finned ducts. Thermal Science, 2020, 24, 267-276.	1.1	1
36	An Improved Solar Cooling System for Date Safety and Storage under Climate of the Maghreb. International Journal of Photoenergy, 2022, 2022, 1-14.	2.5	1

#	Article	IF	CITATIONS
37	The importance of the finning technology in modernizing simple solar air-heat exchangers. Materials Today: Proceedings, 2021, 45, 7547-7552.	1.8	0