Mikael Nilsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7886950/publications.pdf Version: 2024-02-01

MIKAEL NUSSON

#	Article	IF	CITATIONS
1	Review Article: A Review of the Development and Operational Characteristics of the TALSPEAK Process. Solvent Extraction and Ion Exchange, 2007, 25, 665-701.	2.0	301
2	Standard and advanced separation: PUREX processes for nuclear fuel reprocessing. , 2011, , 141-175.		67
3	Transâ€Lanthanide Extraction Studies in the TALSPEAK System: Investigating the Effect of Acidity and Temperature. Solvent Extraction and Ion Exchange, 2009, 27, 354-377.	2.0	64
4	A SAXS Study of Aggregation in the Synergistic TBP–HDBP Solvent Extraction System. Journal of Physical Chemistry B, 2013, 117, 5916-5924.	2.6	54
5	Computational Study of Molecular Structure and Self-Association of Tri- <i>n</i> -butyl Phosphates in <i>n</i> -Dodecane. Journal of Physical Chemistry B, 2015, 119, 1588-1597.	2.6	38
6	Structural study of complexes formed by acidic and neutral organophosphorus reagents. Dalton Transactions, 2017, 46, 1194-1206.	3.3	26
7	Introduction to the reprocessing and recycling of spent nuclear fuels. , 2015, , 3-25.		24
8	The Radiation Chemistry of CMPO: Part 2. Alpha Radiolysis. Solvent Extraction and Ion Exchange, 2014, 32, 167-178.	2.0	19
9	Immunity of nanoscale magnetic tunnel junctions with perpendicular magnetic anisotropy to ionizing radiation. Scientific Reports, 2020, 10, 10220.	3.3	19
10	Synergistic Extraction of Dysprosium and Aggregate Formation in Solvent Extraction Systems Combining TBP and HDBP. Solvent Extraction and Ion Exchange, 2013, 31, 617-633.	2.0	18
11	Quantifying Dimer and Trimer Formation by Tri- <i>n</i> -butyl Phosphates in <i>n</i> -Dodecane: Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2016, 120, 6985-6994.	2.6	15
12	Quantum-dot doped polymeric scintillation material for radiation detection. Radiation Measurements, 2018, 111, 27-34.	1.4	14
13	Challenging conventional f-element separation chemistry – reversing uranyl(<scp>vi</scp>)/lanthanide(<scp>iii</scp>) solvent extraction selectivity. Chemical Communications, 2014, 50, 8670.	4.1	13
14	Combinations of NIR, Raman spectroscopy and physicochemical measurements for improved monitoring of solvent extraction processes using hierarchical multivariate analysis models. Analytica Chimica Acta, 2018, 1006, 10-21.	5.4	13
15	Radiolysis of Tributyl Phosphate by Particles of High Linear Energy Transfer. Solvent Extraction and Ion Exchange, 2014, 32, 584-600.	2.0	12
16	A Comparison of Low and High LET (Linear Energy Transfer) Induced Radiolysis of Solvent Extraction Processes. Procedia Chemistry, 2012, 7, 334-340.	0.7	9
17	Water-soluble Schiff base-actinyl complexes and their effect on the solvent extraction of f-elements. Dalton Transactions, 2016, 45, 15415-15426.	3.3	9
18	Complexation of High-Valency Mid-Actinides by a Lipophilic Schiff Base Ligand: Synthesis, Structural Characterization, and Progress toward Selective Extraction. Inorganic Chemistry, 2019, 58, 3559-3563.	4.0	9

MIKAEL NILSSON

#	Article	IF	CITATIONS
19	Studies of high linear energy transfer dosimetry by 10B(n,α)7Li reactions in aqueous and organic solvents. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292, 719-727.	1.5	8
20	Development of a method for high LET irradiation of liquid systems. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298, 1401-1409.	1.5	8
21	Quantifying Dimer and Trimer Formation of Tri-n-butyl Phosphates in Different Alkane Diluents: FTIR Study. Journal of Physical Chemistry B, 2016, 120, 6976-6984.	2.6	8
22	Radiolytic Degradation of Uranyl-Loaded Tributyl Phosphate by High and Low LET Radiation. Solvent Extraction and Ion Exchange, 2019, 37, 38-52.	2.0	8
23	Rate theory on water exchange in aqueous uranyl ion. Chemical Physics Letters, 2017, 671, 58-62.	2.6	7
24	Production of high specific activity radiolanthanides for medical purposes using the UC Irvine TRIGA reactor. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 1099-1103.	1.5	6
25	Activity Coefficients of di-(2-ethylhexyl) Phosphoric Acid in Select Diluents. Procedia Chemistry, 2012, 7, 209-214.	0.7	5
26	Coordination chemistry of lanthanides in a AOT–CMPO solvent extraction system: UV-Vis and XAFS studies. Dalton Transactions, 2018, 47, 15424-15438.	3.3	5
27	Synergism and Aggregation in Multi-Extractant Solvent Extraction Systems. Solvent Extraction and Ion Exchange, 2019, 37, 269-283.	2.0	5
28	Determination of Activity Coefficients of di-(2-ethylhexyl) Phosphoric Acid Dimer in Select Organic Solvents Using Vapor Phase Osmometry. Solvent Extraction and Ion Exchange, 2013, 31, 550-563.	2.0	4
29	Experimental and Theoretical Studies of Actinide and Lanthanide Ion Transport Across Supported Liquid Membranes. Solvent Extraction and Ion Exchange, 2015, 33, 554-575.	2.0	4
30	Determining Stability Constants Using the AKUFVE Technique. Solvent Extraction and Ion Exchange, 2019, 37, 213-225.	2.0	4
31	Comparative study using ion exchange resins to separate and reduce NORM from oil and gas flowback wastewater. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 497-503.	1.5	3
32	Microscopic Behaviors of Tri- <i>n</i> -Butyl Phosphate, <i>n</i> -Dodecane, and Their Mixtures at Air/Liquid and Liquid/Liquid Interfaces: An AMBER Polarizable Force Field Study. Journal of Physical Chemistry B, 2019, 123, 655-665.	2.6	3
33	Molecular Dynamics Investigations of Dibutyl-phosphoric Acid—Parameterization and Dimerization. Journal of Physical Chemistry B, 2018, 122, 12040-12048.	2.6	2
34	Fluorescence studies of metal complexes in synergistic extraction systems combining dibutyl phosphoric acid and tri-n-butyl phosphate. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 1105-1109.	1.5	1
35	Accuracy, Repeatability, and Limitations for Determination of Chemical Activities from Vapor Pressure Osmometry. Analytical Chemistry, 2018, 90, 12761-12767.	6.5	1
36	Determinations of Dipole Moments for Liquid–Liquid Extraction Reagents. Journal of Solution Chemistry, 2018, 47, 1214-1223.	1.2	1