Franco Miglietta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7886833/publications.pdf

Version: 2024-02-01

227 papers

19,855 citations

23879 60 h-index 133 g-index

235 all docs

235 docs citations

times ranked

235

22757 citing authors

#	Article	IF	CITATIONS
1	The Optical Response of a Mediterranean Shrubland to Climate Change: Hyperspectral Reflectance Measurements during Spring. Plants, 2022, 11, 505.	1.6	4
2	Response times of remote sensing measured sun-induced chlorophyll fluorescence, surface temperature and vegetation indices to evolving soil water limitation in a crop canopy. Remote Sensing of Environment, 2022, 273, 112957.	4.6	22
3	Plants with less chlorophyll: A global change perspective. Global Change Biology, 2021, 27, 959-967.	4.2	17
4	Seasonal and diurnal variations of greenhouse gases in Florence (Italy): Inferring sources and sinks from carbon isotopic ratios. Science of the Total Environment, 2020, 698, 134245.	3.9	9
5	Soil C, N and P cycling enzyme responses to nutrient limitation under elevated CO2. Biogeochemistry, 2020, 151, 221-235.	1.7	18
6	The decline of Fraxinus angustifolia Vahl in a Mediterranean salt meadow: Chlorophyll fluorescence measurements in long-term field experiment. Estuarine, Coastal and Shelf Science, 2020, 247, 107068.	0.9	1
7	WRF wind field assessment under multiple forcings using spatialized aircraft data. Meteorological Applications, 2020, 27, e1920.	0.9	O
8	Individual Tree Crown Segmentation in Two-Layered Dense Mixed Forests from UAV LiDAR Data. Drones, 2020, 4, 10.	2.7	22
9	Effects of varying solar-view geometry and canopy structure on solar-induced chlorophyll fluorescence and PRI. International Journal of Applied Earth Observation and Geoinformation, 2020, 89, 102069.	1.4	28
10	Retrieving soil moisture in rainfed and irrigated fields using Sentinel-2 observations and a modified OPTRAM approach. International Journal of Applied Earth Observation and Geoinformation, 2020, 89, 102113.	1.4	26
11	Dynamics of sunâ€induced chlorophyll fluorescence and reflectance to detect stressâ€induced variations in canopy photosynthesis. Plant, Cell and Environment, 2020, 43, 1637-1654.	2.8	22
12	Multi-Scale Evaluation of Drone-Based Multispectral Surface Reflectance and Vegetation Indices in Operational Conditions. Remote Sensing, 2020, 12, 514.	1.8	50
13	A chlorophyll-deficient, highly reflective soybean mutant: radiative forcing and yield gaps. Environmental Research Letters, 2020, 15, 074014.	2.2	11
14	Chemical-physical analysis and exfoliation of biochar-carbon matter: from agriculture soil improver to starting material for advanced nanotechnologies. Materials Research Express, 2019, 6, 115612.	0.8	12
15	A Spectral Fitting Algorithm to Retrieve the Fluorescence Spectrum from Canopy Radiance. Remote Sensing, 2019, 11, 1840.	1.8	35
16	Radiometric Inter-Consistency of VIIRS DNB on Suomi NPP and NOAA-20 from Observations of Reflected Lunar Lights over Deep Convective Clouds. Remote Sensing, 2019, 11, 934.	1.8	21
17	Optimizing Field Data Collection for Individual Tree Attribute Predictions Using Active Learning Methods. Remote Sensing, 2019, 11, 949.	1.8	2
18	Assessing Across-Scale Optical Diversity and Productivity Relationships in Grasslands of the Italian Alps. Remote Sensing, 2019, 11, 614.	1.8	11

#	Article	IF	CITATIONS
19	A new approach for biocrust and vegetation monitoring in drylands using multi-temporal Sentinel-2 images. Progress in Physical Geography, 2019, 43, 496-520.	1.4	18
20	Biochar mineralization and priming effect in a poplar short rotation coppice from a 3-year field experiment. Biology and Fertility of Soils, 2019, 55, 67-78.	2.3	47
21	Changes in the pattern of polycyclic aromatic hydrocarbons in soil treated with biochar from a multiyear field experiment. Chemosphere, 2019, 219, 662-670.	4.2	40
22	Prediction of stem diameter and biomass at individual tree crown level with advanced machine learning techniques. IForest, 2019, 12, 323-329.	0.5	13
23	A Novel Computational Model of the Wheat Global Market with an Application to the 2010 Russian Federation Case. Jasss, 2019, 22, .	1.0	2
24	Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant. Plant, Cell and Environment, 2018, 41, 1427-1437.	2.8	68
25	ONS: an ontology for a standardized description of interventions and observational studies in nutrition. Genes and Nutrition, 2018, 13, 12.	1.2	28
26	Mineral composition of durum wheat grain and pasta under increasing atmospheric CO2 concentrations. Food Chemistry, 2018, 242, 53-61.	4.2	29
27	Solar dimming above temperate forests and its impact on local climate. Environmental Research Letters, 2018, 13, 064014.	2.2	1
28	Dissolved greenhouse gas concentrations in 40 lakes in the Alpine area. Aquatic Sciences, 2018, 80, 1.	0.6	16
29	Exploring the physiological information of Sun-induced chlorophyll fluorescence through radiative transfer model inversion. Remote Sensing of Environment, 2018, 215, 97-108.	4.6	41
30	Industrial point source CO2 emission strength estimation with aircraft measurements and dispersion modelling. Environmental Monitoring and Assessment, 2018, 190, 165.	1.3	13
31	Analysis of Airborne Optical and Thermal Imagery for Detection of Water Stress Symptoms. Remote Sensing, 2018, 10, 1139.	1.8	64
32	Development and Performance Assessment of a Low-Cost UAV Laser Scanner System (LasUAV). Remote Sensing, 2018, 10, 1094.	1.8	27
33	Biochar alters the soil microbiome and soil function: results of nextâ€generation amplicon sequencing across Europe. GCB Bioenergy, 2017, 9, 591-612.	2.5	126
34	Physical and Chemical Features of Biochar: A Reservoir of Materials in Advanced Nanotechnologies. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 545-547.	0.2	3
35	Biochar-based nursery substrates: The effect of peat substitution on reduced salinity. Urban Forestry and Urban Greening, 2017, 23, 27-34.	2.3	23
36	Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms. Microbiome, 2017, 5, 32.	4.9	69

3

#	Article	IF	CITATIONS
37	Short-term effects of biochar on grapevine fine root dynamics and arbuscular mycorrhizae production. Agriculture, Ecosystems and Environment, 2017, 239, 236-245.	2.5	65
38	The FLuorescence EXplorer Mission Concept—ESA's Earth Explorer 8. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 1273-1284.	2.7	238
39	Biochar improves the fertility of a Mediterranean vineyard without toxic impact on the microbial community. Agronomy for Sustainable Development, 2017, 37, 1.	2.2	22
40	Elevated field atmospheric CO2 concentrations affect the characteristics of winter wheat (cv.) Tj ETQq0 0 0 rgB	T /Overloc 0.7	k 10 Tf 50 62 20
41	Hydrochar enhances growth of poplar for bioenergy while marginally contributing to direct soil carbon sequestration. GCB Bioenergy, 2017, 9, 1618-1626.	2.5	31
42	Forestry applications of UAVs in Europe: a review. International Journal of Remote Sensing, 2017, 38, 2427-2447.	1.3	325
43	Anthropogenic charcoal-rich soils of the XIX century reveal that biochar leads to enhanced fertility and fodder quality of alpine grasslands. Plant and Soil, 2017, 411, 499-516.	1.8	10
44	Measurements and modeling of surface–atmosphere exchange of microorganisms in Mediterranean grassland. Atmospheric Chemistry and Physics, 2017, 17, 14919-14936.	1.9	24
45	Quantitative global mapping of terrestrial vegetation photosynthesis: The Fluorescence Explorer (FLEX) mission. , 2017, , .		1
46	Impact of Biochar Formulation on the Release of Particulate Matter and on Short-Term Agronomic Performance. Sustainability, 2017, 9, 1131.	1.6	16
47	Diet, Environments, and Gut Microbiota. A Preliminary Investigation in Children Living in Rural and Urban Burkina Faso and Italy. Frontiers in Microbiology, 2017, 8, 1979.	1.5	222
48	Black carbon aerosol from biochar threats its negative emission potential. Global Change Biology, 2016, 22, 2313-2314.	4.2	23
49	Increasing atmospheric CO 2 modifies durum wheat grain quality and pasta cooking quality. Journal of Cereal Science, 2016, 69, 245-251.	1.8	10
50	Photooxidation of foramsulfuron: Effects of char substances. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 326, 16-20.	2.0	8
51	Hail defoliation assessment in corn (Zea mays L.) using airborne LiDAR. Field Crops Research, 2016, 196, 426-437.	2.3	13
52	Plant adaptation or acclimation to rising CO $<$ sub $>$ 2 $<$ /sub $>$? Insight from first multigenerational RNAâ \in 5eq transcriptome. Global Change Biology, 2016, 22, 3760-3773.	4.2	47
53	Very high spectral resolution imaging spectroscopy: The Fluorescence Explorer (FLEX) mission. , 2016, , .		3
54	Negative elevation-dependent warming trend in the Eastern Alps. Environmental Research Letters, 2016, 11, 044021.	2.2	37

#	Article	IF	Citations
55	Field application of pelletized biochar: Short term effect on the hydrological properties of a silty clay loam soil. Agricultural Water Management, 2016, 163, 190-196.	2.4	91
56	Biochar mineralization and priming effect on <scp>SOM</scp> decomposition in two European short rotation coppices. GCB Bioenergy, 2015, 7, 1150-1160.	2.5	66
57	THE BIOCHAR - A SOLUTION TO ENHANCE PROCESSING TOMATO PRODUCTION. Acta Horticulturae, 2015, , 209-213.	0.1	0
58	Transport of fluorobenzoate tracers in a vegetated hydrologic control volume: 1. Experimental results. Water Resources Research, 2015, 51, 2773-2792.	1.7	23
59	Mimicking biochar-albedo feedback in complex Mediterranean agricultural landscapes. Environmental Research Letters, 2015, 10, 084014.	2.2	17
60	Microclimatic Performance of a Free-Air Warming and CO2 Enrichment Experiment in Windy Wyoming, USA. PLoS ONE, 2015, 10, e0116834.	1.1	28
61	Soil C:N stoichiometry controls carbon sink partitioning between above-ground tree biomass and soil organic matter in high fertility forests. IForest, 2015, 8, 195-206.	0.5	40
62	Biochar increases vineyard productivity without affecting grape quality: Results from a four years field experiment in Tuscany. Agriculture, Ecosystems and Environment, 2015, 201, 20-25.	2.5	101
63	Biochar–macrofauna interplay: Searching for new bioindicators. Science of the Total Environment, 2015, 536, 449-456.	3.9	24
64	WhiteRef: A New Tower-Based Hyperspectral System for Continuous Reflectance Measurements. Sensors, 2015, 15, 1088-1105.	2.1	19
65	Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agriculture, Ecosystems and Environment, 2015, 207, 163-170.	2.5	156
66	Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology, 2015, 21, 2861-2880.	4.2	683
67	Fate of Soil Organic Carbon and Polycyclic Aromatic Hydrocarbons in a Vineyard Soil Treated with Biochar. Environmental Science & Environmental Scienc	4.6	46
68	More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. GCB Bioenergy, 2015, 7, 658-672.	2.5	135
69	N2O Emission Factors for Italian Crops. Environmental Science and Engineering, 2015, , 135-144.	0.1	2
70	Carbon Sequestration and Fertility after Centennial Time Scale Incorporation of Charcoal into Soil. PLoS ONE, 2014, 9, e91114.	1.1	55
71	Biodiversity Mapping in a Tropical West African Forest with Airborne Hyperspectral Data. PLoS ONE, 2014, 9, e97910.	1.1	54
72	Comparing integrated stable isotope and eddy covariance estimates of water-use efficiency on a Mediterranean successional sequence. Oecologia, 2014, 176, 581-594.	0.9	20

#	Article	IF	CITATIONS
73	A ground network for SAR-derived soil moisture product calibration, validation and exploitation in Southern Italy. , 2014 , , .		16
74	Aircraft mass budgeting to measure CO2 emissions of Rome, Italy. Environmental Monitoring and Assessment, 2014, 186, 2053-2066.	1.3	15
75	Current status, uncertainty and future needs in soil organic carbon monitoring. Science of the Total Environment, 2014, 468-469, 376-383.	3.9	171
76	Effect of biochar addition on soil microbial community in a wheat crop. European Journal of Soil Biology, 2014, 60, 9-15.	1.4	164
77	Durum wheat quality prediction in Mediterranean environments: From local to regional scale. European Journal of Agronomy, 2014, 61, 1-9.	1.9	14
78	Impact of biochar application on plant water relations in Vitis vinifera (L.). European Journal of Agronomy, 2014, 53, 38-44.	1.9	251
79	Aircraft wind measurements to assess a coupled <scp>WRF ALMET</scp> mesoscale system. Meteorological Applications, 2014, 21, 117-128.	0.9	13
80	Long-term pan evaporation observations as a resource to understand the water cycle trend: case studies from Australia. Hydrological Sciences Journal, 2013, 58, 1287-1296.	1.2	7
81	Impact of Climate Variability and Extremes on the Carbon Cycle of the Mediterranean Region. Advances in Global Change Research, 2013, , 31-47.	1.6	2
82	An energyâ€biochar chain involving biomass gasification and rice cultivation in Northern Italy. GCB Bioenergy, 2013, 5, 192-201.	2.5	34
83	CO2, CH4 and Particles Flux Measurements in Florence, Italy. Energy Procedia, 2013, 40, 537-544.	1.8	3
84	Biochar successfully replaces activated charcoal for in vitro culture of two white poplar clones reducing ethylene concentration. Plant Growth Regulation, 2013, 69, 43-50.	1.8	17
85	Tree species diversity interacts with elevated <scp><cp>CO</cp></scp> < ₂ to induce a greater root system response. Global Change Biology, 2013, 19, 217-228.	4.2	46
86	Climate Change Impacts on Typical Mediterranean Crops and Evaluation of Adaptation Strategies to Cope With. Advances in Global Change Research, 2013, , 49-70.	1.6	12
87	Elevated <scp>CO</scp> ₂ enrichment induces a differential biomass response in a mixed species temperate forest plantation. New Phytologist, 2013, 198, 156-168.	3.5	45
88	Forest species and biomass estimation using airborne laser scanning and hyperspectral images., 2013,,.		0
89	Morphological investigation and physical characterization of ancient fragments of pyrogenic carbon. Journal of Physics: Conference Series, 2013, 470, 012003.	0.3	3
90	Short-term cropland responses to temperature extreme events during late winter. Biogeosciences, 2013, 10, 5545-5553.	1.3	6

#	Article	IF	Citations
91	Chemical, Biochemical, and Microbiological Properties of Soils from Abandoned and Extensively Cultivated Olive Orchards. Scientific World Journal, The, 2013, 2013, 1-6.	0.8	8
92	Surface albedo following biochar application in durum wheat. Environmental Research Letters, 2012, 7, 014025.	2.2	89
93	Land use change and soil organic carbon dynamics in Mediterranean agro-ecosystems: The case study of Pianosa Island. Geoderma, 2012, 175-176, 29-36.	2.3	31
94	Durum wheat modeling: The Delphi system, 11 years of observations in Italy. European Journal of Agronomy, 2012, 43, 108-118.	1.9	18
95	Methane and carbon dioxide fluxes and source partitioning in urban areas: The case study of Florence, Italy. Environmental Pollution, 2012, 164, 125-131.	3.7	84
96	Quantification of excess water loss in plant canopies warmed with infrared heating. Global Change Biology, 2012, 18, 2860-2868.	4.2	20
97	Soil organic carbon stock assessment for the different cropland land uses in Italy. Biology and Fertility of Soils, 2012, 48, 9-17.	2.3	72
98	Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland. Biogeosciences, 2011, 8, 2729-2739.	1.3	52
99	Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy, 2011, 34, 231-238.	1.9	355
100	Locating industrial VOC sources with aircraft observations. Environmental Pollution, 2011, 159, 1174-1182.	3.7	19
101	Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere, 2011, 85, 1464-1471.	4.2	264
102	Comparing carbon fluxes between different stages of secondary succession of a karst grassland. Agriculture, Ecosystems and Environment, 2011, 140, 199-207.	2.5	32
103	Stomatal numbers, leaf and canopy conductance, and the control of transpiration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E275-E275.	3.3	12
104	Application of DNDC biogeochemistry model to estimate greenhouse gas emissions from Italian agricultural areas at high spatial resolution. Agriculture, Ecosystems and Environment, 2010, 139, 546-556.	2.5	52
105	Validating an integrated strategy to model net land carbon exchange against aircraft flux measurements. Remote Sensing of Environment, 2010, 114, 1108-1116.	4.6	9
106	The transcriptome of <i>Populus</i> in elevated CO ₂ reveals increased anthocyanin biosynthesis during delayed autumnal senescence. New Phytologist, 2010, 186, 415-428.	3.5	73
107	Remote sensing of sunâ€induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Global Change Biology, 2010, 16, 171-186.	4.2	246
108	Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model. Biogeosciences, 2010, 7, 2397-2417.	1.3	10

#	Article	IF	Citations
109	The Biochar Option to Improve Plant Yields: First Results From Some Field and Pot Experiments in Italy. Italian Journal of Agronomy, 2010, 5, 3.	0.4	97
110	Climate control of terrestrial carbon exchange across biomes and continents. Environmental Research Letters, 2010, 5, 034007.	2.2	137
111	Cataloguing Soil Carbon Stocks. Science, 2010, 330, 1476-1476.	6.0	8
112	Challenges in elevated CO2 experiments on forests. Trends in Plant Science, 2010, 15, 5-10.	4.3	46
113	Dis-aggregation of airborne flux measurements using footprint analysis. Agricultural and Forest Meteorology, 2010, 150, 966-983.	1.9	32
114	Mesoscale modelling of the CO ₂ interactions between the surface and the atmosphere applied to the April 2007 CERES field experiment. Biogeosciences, 2009, 6, 633-646.	1.3	27
115	Sensible and latent heat flux from radiometric surface temperatures at the regional scale: methodology and evaluation. Biogeosciences, 2009, 6, 1975-1986.	1.3	22
116	Carbon Dioxide Emissions of the City Center of Firenze, Italy: Measurement, Evaluation, and Source Partitioning. Journal of Applied Meteorology and Climatology, 2009, 48, 1940-1947.	0.6	65
117	Inhibition of net nitrification activity in a Mediterranean woodland: possible role of chemicals produced by Arbutus unedo. Plant and Soil, 2009, 315, 273-283.	1.8	64
118	Precipitation pulses enhance respiration of Mediterranean ecosystems: the balance between organic and inorganic components of increased soil CO ₂ efflux. Global Change Biology, 2009, 15, 1289-1301.	4.2	182
119	Coppicing shifts CO ₂ stimulation of poplar productivity to aboveâ€ground pools: a synthesis of leaf to stand level results from the POP/EUROFACE experiment. New Phytologist, 2009, 182, 331-346.	3.5	45
120	Water use of a bioenergy plantation increases in a future high CO2 world. Biomass and Bioenergy, 2009, 33, 200-208.	2.9	52
121	Carbon Dioxide and Acetone Airâ^'Sea Fluxes over the Southern Atlantic. Environmental Science & Emp; Technology, 2009, 43, 5218-5222.	4.6	33
122	Bridging the gap between atmospheric concentrations and local ecosystem measurements. Geophysical Research Letters, 2009, 36, .	1.5	46
123	CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands. Biogeosciences, 2009, 6, 1181-1198.	1.3	115
124	The Sky Arrow ERA, an innovative airborne platform to monitor mass, momentum and energy exchange of ecosystems. Annals of Geophysics, 2009, 49, .	0.5	12
125	Detecting regional variability in sources and sinks of carbon dioxide: a synthesis. Biogeosciences, 2009, 6, 1015-1026.	1.3	25
126	Experimental design of multifactor climate change experiments with elevated CO ₂ , warming and drought: the CLIMAITE project. Functional Ecology, 2008, 22, 185-195.	1.7	75

#	Article	IF	CITATIONS
127	Future atmospheric CO ₂ leads to delayed autumnal senescence. Global Change Biology, 2008, 14, 264-275.	4.2	95
128	Next generation of elevated [CO ₂] experiments with crops: a critical investment for feeding the future world. Plant, Cell and Environment, 2008, 31, 1317-1324.	2.8	154
129	The new Pest Risk Analysis for <i>Tilletia indica</i> , the cause of Karnal bunt of wheat, continues to support the quarantine status of the pathogen in Europe. Plant Pathology, 2008, 57, 603-611.	1.2	34
130	ASPIS, A Flexible Multispectral System for Airborne Remote Sensing Environmental Applications. Sensors, 2008, 8, 3240-3256.	2.1	8
131	Regional Measurements and Modelling of Carbon Exchange. Ecological Studies, 2008, , 285-307.	0.4	2
132	FLEX $\hat{a}\in$ " Fluorescence Explorer: A Remote Sensing Approach to Quantify Spatio-Temporal Variations of Photosynthetic Efficiency from Space., 2008,, 1387-1390.		19
133	Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the "Birch effect". Tree Physiology, 2007, 27, 929-940.	1.4	415
134	Variation in cold hardiness and carbohydrate concentration from dormancy induction to bud burst among provenances of three European oak species. Tree Physiology, 2007, 27, 817-825.	1.4	198
135	Mesoscale circulations over complex terrain in the Valencia coastal region, Spain – Part 1: Simulation of diurnal circulation regimes. Atmospheric Chemistry and Physics, 2007, 7, 1835-1849.	1.9	55
136	Mesoscale circulations over complex terrain in the Valencia coastal region, Spain – Part 2: Modeling CO ₂ transport using idealized surface fluxes. Atmospheric Chemistry and Physics, 2007, 7, 1851-1868.	1.9	67
137	Net regional ecosystem CO2exchange from airborne and ground-based eddy covariance, land-use maps and weather observations. Global Change Biology, 2007, 13, 548-560.	4.2	20
138	Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 2007, 13, 634-651.	4.2	486
139	The dispersion of the Buncefield oil fire plume: An extreme accident without air quality consequences. Atmospheric Environment, 2007, 41, 9506-9517.	1.9	17
140	Growth and Quality Responses of Potato to Elevated [CO2]. Ecological Studies, 2006, , 105-119.	0.4	3
141	Extraction and identification by GC-MS of phenolic acids in traditional balsamic vinegar from Modena. Journal of Food Composition and Analysis, 2006, 19, 49-54.	1.9	73
142	Mycorrhizal Hyphal Turnover as a Dominant Process for Carbon Input into Soil Organic Matter. Plant and Soil, 2006, 281, 15-24.	1.8	345
143	The TasFACE climate-change impacts experiment: design and performance of combined elevated CO2 and temperature enhancement in a native Tasmanian grassland. Australian Journal of Botany, 2006, 54, 1.	0.3	62
144	The CarboEurope Regional Experiment Strategy. Bulletin of the American Meteorological Society, 2006, 87, 1367-1380.	1.7	101

#	Article	IF	Citations
145	FACE Technology: Past, Present, and Future. , 2006, , 15-43.		21
146	On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 2005, 11, 1424-1439.	4.2	2,778
147	Gross primary production is stimulated for three Populus species grown under free-air CO2 enrichment from planting through canopy closure. Global Change Biology, 2005, 11, 644-656.	4.2	45
148	Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437, 529-533.	13.7	3,245
149	Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theoretical and Applied Climatology, 2005, 80, 121-141.	1.3	173
150	Reconstruction of Past Co2 Concentration at a Natural Co2 Vent Site Using Radiocarbon Dating of Tree Rings. Radiocarbon, 2005, 47, 257-263.	0.8	14
151	Net carbon storage in a poplar plantation (POPFACE) after three years of free-air CO2 enrichment. Tree Physiology, 2005, 25, 1399-1408.	1.4	74
152	Global change and agro-forest ecosystems: Adaptation and mitigation in a FACE experiment on a poplar plantation. Plant Biosystems, 2005, 139, 255-264.	0.8	7
153	Physiological and Yield Responses of Grapevine (Vitis viniferal.) Exposed to Elevated CO2Concentrations in a Free Air CO2Enrichment (FACE). Journal of Crop Improvement, 2005, 13, 345-359.	0.9	8
154	Physiological and morphological responses of grassland species toelevated atmospheric CO2 concentrations in FACE-systems and natural CO2 springs. Functional Plant Biology, 2004, 31, 181.	1.1	47
155	Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment+. Plant, Cell and Environment, 2004, 27, 381-391.	2.8	104
156	Monoterpene emission responses to elevated CO 2 in a Mediterraneanâ€type ecosystem. New Phytologist, 2004, 161, 17-21.	3.5	24
157	Entrainment process of carbon dioxide in the atmospheric boundary layer. Journal of Geophysical Research, 2004, 109, .	3.3	85
158	Comparison between tower and aircraft-based eddy covariance fluxes in five European regions. Agricultural and Forest Meteorology, 2004, 127, 1-16.	1.9	91
159	Regional measurement and modelling of carbon balances. , 2004, , 93-108.		3
160	Three years of free-air CO2 enrichment (POPFACE) only slightly affect profiles of light and leaf characteristics in closed canopies of Populus. Global Change Biology, 2003, 9, 1022-1037.	4.2	44
161	Do aboveâ€ground growth dynamics of poplar change with time under CO 2 enrichment?. New Phytologist, 2003, 160, 305-318.	3.5	45
162	Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	1.9	501

#	Article	IF	Citations
163	Inverse modeling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranean ecosystems. Journal of Geophysical Research, 2003, 108, .	3.3	141
164	Effect of microwaves on volatile compounds in origanum. LWT - Food Science and Technology, 2003, 36, 555-560.	2.5	9
165	Spatial and Temporal Effects of Free-Air CO2Enrichment (POPFACE) on Leaf Growth, Cell Expansion, and Cell Production in a Closed Canopy of Poplar. Plant Physiology, 2003, 131, 177-185.	2.3	96
166	Effect of Microwaves on Volatile Compounds in White and Black Pepper. LWT - Food Science and Technology, 2002, 35, 260-264.	2.5	30
167	Severe drought effects on ecosystem CO2 and H2 O fluxes at three Mediterranean evergreen sites: revision of current hypotheses?. Global Change Biology, 2002, 8, 999-1017.	4.2	460
168	An approach to computer automation of the extracorporeal circulation. Computers in Biology and Medicine, 2002, 32, 73-83.	3.9	5
169	Free-air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytologist, 2001, 150, 465-476.	3.5	238
170	Leaf area is stimulated in Populus by free air CO2 enrichment (POPFACE), through increased cell expansion and production. Plant, Cell and Environment, 2001, 24, 305-315.	2.8	107
171	Spatial and temporal performance of the miniface (free air CO2 enrichment) system on Bog Ecosystems in northern and Central Europe. Environmental Monitoring and Assessment, 2001, 66, 107-127.	1.3	86
172	Free Air CO2 Enrichment (FACE) of grapevine (Vitis vinifera L.): I. Development and testing of the system for CO2 enrichment. European Journal of Agronomy, 2001, 14, 135-143.	1.9	26
173	Free Air CO2 Enrichment (FACE) of grapevine (Vitis vinifera L.): II. Growth and quality of grape and wine in response to elevated CO2 concentrations. European Journal of Agronomy, 2001, 14, 145-155.	1.9	150
174	Four-channel tocography in uneventful pregnancies: a prospective study in primigravidas and multigravidas. Journal of the Society for Gynecologic Investigation, 2001, 8, 48-53.	1.9	3
175	The preterm prediction study: maternal serum relaxin, sonographic cervical length, and spontaneous preterm birth in twins. Journal of the Society for Gynecologic Investigation, 2001, 8, 39-42.	1.9	28
176	Effects of lifelong [CO2] enrichment on carboxylation and light utilization of Quercus pubescens Willd. examined with gas exchange, biochemistry and optical techniques. Plant, Cell and Environment, 2000, 23, 1353-1362.	2.8	75
177	Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring. Tree Physiology, 1999, 19, 261-270.	1.4	65
178	Responses of two Populus clones to elevated atmospheric CO2 concentration in the field. Annales Des Sciences ForestiÄres, 1999, 56, 493-500.	1.1	34
179	Effective QED in dielectric media. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1998, 20, 43-53.	0.4	0
180	Foliar antioxidant status of plants from naturally high-CO2 sites. Physiologia Plantarum, 1998, 104, 765-771.	2.6	9

#	Article	IF	Citations
181	Transpiration and stomatal behaviour of Quercus ilex plants during the summer in a Mediterranean carbon dioxide spring. Plant, Cell and Environment, 1998, 21, 613-622.	2.8	98
182	Elevated CO 2 concentrations and stomatal density: observations from 17 plant species growing in a CO 2 spring in central Italy. Global Change Biology, 1998, 4, 17-22.	4.2	87
183	Free Air CO 2 Enrichment of potato (Solanum tuberosum L.): development, growth and yield. Global Change Biology, 1998, 4, 163-172.	4.2	153
184	Isotope discrimination and photosynthesis of vegetation growing in the Bossoleto CO2 spring. Chemosphere, 1998, 36, 771-776.	4.2	21
185	Morphological adjustments of mature Quercus ilex trees to elevated CO2. Acta Oecologica, 1997, 18, 361-365.	0.5	38
186	Studying morpho-physiological responses of <i>Scirpus lacustris</i> from naturally CO ₂ -enriched environments., 1997,, 134-147.		5
187	Sites of naturally elevated carbon dioxide. , 1997, , 1-6.		5
188	Burning coal seams in southern Utah: a natural system for studies of plant responses to elevated CO2., 1997,, 56-68.		0
189	Acidophilic grass communities of CO ₂ springs in central Italy: composition, structure and ecology., 1997,, 114-133.		7
190	Carbon physiology of <i>Quercus pubescens</i> Wild, growing at the Bossoleto CO ₂ spring in central Italy. , 1997, , 148-164.		9
191	The impact of elevated CO ₂ on the growth of <i>Agrostis canina</i> and <i>Plantago major</i> adapted to contrasting CO ₂ concentrations. , 1997, , 174-196.		4
192	Stomatal numbers in holm oak ($\langle i \rangle$ Quercus ilex $\langle i \rangle$ L.) leaves grown in naturally and artificially CO $\langle sub \rangle$ 2 $\langle sub \rangle$ -enriched environments., 1997,, 197-208.		2
193	Can rising CO ₂ alleviate oxidative risk for the plant cell? Testing the hypothesis under natural CO ₂ enrichment., 1997,, 221-241.		8
194	Long-term effects of enhanced CO ₂ concentrations on leaf gas exchange: research opportunities using CO ₂ springs. , 1997, , 69-86.		13
195	The impact of elevated CO 2 on growth and photosynthesis in Agrostis canina L. ssp. monteluccii adapted to contrasting atmospheric CO 2 concentrations. Oecologia, 1997, 110, 169-178.	0.9	40
196	Free Air CO 2 Enrichment of potato (Solanum tuberosum , L.): design and performance of the CO 2 â€fumigation system. Global Change Biology, 1997, 3, 417-427.	4.2	48
197	Thirty years of in situ tree growth under elevated CO 2 : a model for future forest responses?. Global Change Biology, 1997, 3, 463-471.	4.2	231
198	Photochemical Response to Summer Drought in Quercus Ilex Trees Growing in a Naturally CO2 Enriched Site. Forestry Sciences, 1997, , 119-124.	0.4	1

#	Article	IF	CITATIONS
199	Water relations of oak species growing in the natural CO ₂ spring of Rapolano (central) Tj ETQq1	1 0.784314 1.1	FrgBT Overlo
200	The effect of free air carbon dioxide enrichment (FACE) and soil nitrogen availability on the photosynthetic capacity of wheat. Photosynthesis Research, 1996, 47, 281-290.	1.6	58
201	Seasonal Variations of Antioxidants in Wheat (Triticum aestivum) Leaves Grown Under Field Conditions. Functional Plant Biology, 1996, 23, 687.	1.1	12
202	Modelling the impact of future climate scenarios on yield and yield variability of grapevine. Climate Research, 1996, 7, 213-224.	0.4	159
203	The effects on Arbutus unedo L. of long-term exposure to elevated CO2. Global Change Biology, 1995, 1, 295-302.	4.2	55
204	The expected effects of climate change on wheat development. Global Change Biology, 1995, 1, 407-415.	4.2	20
205	Instability of the QED vacuum in the presence of condensed matter. Il Nuovo Cimento A, 1995, 108, 205-212.	0.2	1
206	Isotopic carbon discrimination and leaf nitrogen content of Erica arborea L. along a CO2 concentration gradient in a CO2 spring in Italy. Tree Physiology, 1995, 15, 327-332.	1.4	28
207	Leaf Metabolism During Summer Drought in Quercus llex Trees with Lifetime Exposure to Elevated CO 2. Journal of Biogeography, 1995, 22, 255.	1.4	33
208	Modelling the effects of climatic change and genetic modification on nitrogen use by wheat. European Journal of Agronomy, 1995, 4, 419-429.	1.9	13
209	Comparison of models to simulate leaf appearance in wheat. European Journal of Agronomy, 1995, 4, 15-25.	1.9	12
210	Carbon dioxide emissions at an Italian mineral spring: measurements of average CO2 concentration and air temperature. Agricultural and Forest Meteorology, 1995, 73, 17-27.	1.9	50
211	Preliminary Studies of the Long-Term CO2 Response of Mediterranean Vegetation Around Natural CO2 Vents. Ecological Studies, 1995, , 102-120.	0.4	13
212	Studying the effect of elevated CO2 in the open in a naturally enriched environment in Central Italy. Plant Ecology, 1993, 104-105, 391-400.	1.2	46
213	Natural CO2 springs in Italy: a resource for examining long-term response of vegetation to rising atmospheric CO2 concentrations. Plant, Cell and Environment, 1993, 16, 873-878.	2.8	107
214	Growth and onto-morphogenesis of soybean (Glycine max Merril) in an open, naturally CO2-enriched environment. Plant, Cell and Environment, 1993, 16, 909-918.	2.8	25
215	PLASMO: a simulation model for control of Plasmopara viticola on grapevine. EPPO Bulletin, 1993, 23, 619-626.	0.6	26
216	The ontogenesis of wheat under scenarios of increased air temperature in Italy: a simulation study. European Journal of Agronomy, 1993, 2, 261-280.	1.9	5

#	Article	IF	CITATIONS
217	The Antioxidant Status of Soybean (Glycine max) Leaves Grown Under Natural CO2 Enrichment in the Field. Functional Plant Biology, 1993, 20, 275.	1.1	37
218	The Effects of Climatic Change on Development in Wheat: Analysis and Modelling. Journal of Experimental Botany, 1992, 43, 1147-1157.	2.4	10
219	Different methods for separating diffuse and direct components of solar radiation and their application in crop growth models. Climate Research, 1992, 2, 47-54.	0.4	20
220	Estimating daily global radiation from air temperature and rainfall measurements. Climate Research, 1991, 1, 117-124.	0.4	39
221	Simulation of wheat ontogenesis. I. Appearance of main stem leaves in the field. Climate Research, 1991, 1, 145-150.	0.4	32
222	Simulation of wheat ontogenesis. II. Prediction dates of ear emergence and main stem final leaf number. Climate Research, 1991, 1, 151-160.	0.4	19
223	Simulation of wheat ontogenesis. III. Effect of variety, nitrogen fertilization and water stress on leaf appearance and final leaf number in the field. Climate Research, 1991, 1, 233-242.	0.4	6
224	Effect of photoperiod and temperature on leaf initiation rates in wheat (Triticum spp.). Field Crops Research, 1989, 21, 121-130.	2.3	63
225	Forest classification by principal component analyses of TM data. International Journal of Remote Sensing, 1988, 9, 1597-1612.	1.3	32
226	Nontraumatic Responses of Natural Vegetation to Long-Term Carbon Dioxide Enrichment. ASA Special Publication, 0, , 101-112.	0.8	0
227	"Flex 2018―Cruise: an opportunity to assess phytoplankton chlorophyll fluorescence retrieval at different observative scales. Proceedings E Report, 0, , 688-697.	0.0	O