
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7886724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Progress in Materials Science, 2014, 60, 130-207.	32.8	1,915
2	Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Materialia, 2001, 49, 1199-1207.	7.9	1,059
3	Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution. Progress in Materials Science, 2021, 117, 100752.	32.8	436
4	Dynamic Recrystallization in Pure Magnesium. Materials Transactions, 2001, 42, 1928-1937.	1.2	293
5	Continuous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 396, 341-351.	5.6	212
6	High strain rate superplasticity in a continuously recrystallized Al–6%Mg–0.3%Sc alloy. Acta Materialia, 1998, 46, 2789-2800.	7.9	184
7	Continuous recrystallization in austenitic stainless steel after large strain deformation. Acta Materialia, 2002, 50, 1547-1557.	7.9	178
8	Dynamic recrystallization mechanisms operating in a Ni–20%Cr alloy under hot-to-warm working. Acta Materialia, 2010, 58, 3624-3632.	7.9	160
9	Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 545, 176-186.	5.6	157
10	Microstructure behavior of Al–Mg–Sc alloy processed by ECAP at elevated temperature. Acta Materialia, 2008, 56, 821-834.	7.9	149
11	Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 629, 29-40.	5.6	146
12	Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773–1273 K. Acta Materialia, 2015, 82, 244-254.	7.9	139
13	Al3(Sc,Zr)-based precipitates in Al–Mg alloy: Effect of severe deformation. Acta Materialia, 2017, 124, 210-224.	7.9	138
14	Superplastic behavior of an Al–Mg alloy at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 342, 169-177.	5.6	124
15	Effect of second phase particles on grain refinement during equal-channel angular pressing of an Al–Mg–Mn alloy. Acta Materialia, 2012, 60, 487-497.	7.9	112
16	Microstructure evolution and strengthening mechanisms of Fe–23Mn–0.3C–1.5Al TWIP steel during cold rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 617, 52-60.	5.6	112
17	High strain rate superplasticity in a commercial Al–Mg–Sc alloy. Scripta Materialia, 2004, 50, 511-516.	5.2	108
18	Precipitation structure and strengthening mechanisms in an Al-Cu-Mg-Ag alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 702, 29-40.	5.6	108

#	Article	IF	CITATIONS
19	Optimization of processing-microstructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 136-143.	5.6	107
20	Effect of deformation temperature on microstructure evolution in aluminum alloy 2219 during hot ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 486, 662-671.	5.6	106
21	Structural changes of tempered martensitic 9%Cr–2%W–3%Co steel during creep at 650°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 632-639.	5.6	106
22	Wear resistance and electroconductivity in copper processed by severe plastic deformation. Wear, 2013, 305, 89-99.	3.1	100
23	Deformation structures and strengthening mechanisms in an Al Mg Sc Zr alloy. Journal of Alloys and Compounds, 2017, 698, 957-966.	5.5	92
24	Hall-Petch relationship for austenitic stainless steels processed by large strain warm rolling. Acta Materialia, 2017, 136, 39-48.	7.9	92
25	Grain Refinement under Multiple Warm Deformation in 304 Type Austenitic Stainless Steel ISIJ International, 1999, 39, 592-599.	1.4	87
26	Deformation behavior of a 2219 Al alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 334, 104-113.	5.6	86
27	Microstructure Evolution and Pinning of Boundaries by Precipitates in a 9Âpct Cr Heat Resistant Steel During Creep. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 162-172.	2.2	86
28	Laves-phase precipitates in a low-carbon 9% Cr martensitic steel during aging and creep at 923 K. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 615, 153-163.	5.6	86
29	Creep strength breakdown and microstructure evolution in a 3%Co modified P92 steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 654, 1-12.	5.6	86
30	Solidification behaviour and the effects of homogenisation on the structure of an Al–Cu–Mg–Ag–Sc alloy. Journal of Alloys and Compounds, 2011, 509, 9497-9507.	5.5	82
31	Grain refinement kinetics and strengthening mechanisms in Cu–0.3Cr–0.5Zr alloy subjected to intense plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 654, 131-142.	5.6	81
32	Effect of pressing temperature on fine-grained structure formation in 7475 aluminum alloy during ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 381, 121-128.	5.6	79
33	Effect of pre-straining on the aging behavior and mechanical properties of an Al–Cu–Mg–Ag alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 625, 119-130.	5.6	79
34	Friction stir welding of a Ñarbon-doped CoCrFeNiMn high-entropy alloy. Materials Characterization, 2018, 145, 353-361.	4.4	77
35	Grain refinement in as-cast 7475 aluminum alloy under hot deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 344, 348-356.	5.6	76
36	Laves phase evolution in a modified P911 heat resistant steel during creep at 923 K. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 71-77.	5.6	76

#	Article	IF	CITATIONS
37	Grain refinement in aluminum alloy 2219 during ECAP at 250°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 473, 297-305.	5.6	72
38	Effect of microstructure on continuous propagation of the Portevin–Le Chatelier deformation bands. International Journal of Plasticity, 2017, 96, 210-226.	8.8	72
39	Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel. Materials Characterization, 2016, 112, 180-187.	4.4	71
40	Grain refinement in a commercial Al–Mg–Sc alloy under hot ECAP conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 444, 18-30.	5.6	66
41	Strain-induced grain evolution in an austenitic stainless steel under warm multiple forging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 564, 413-422.	5.6	65
42	Development of Nanocrystalline 304L Stainless Steel by Large Strain Cold Working. Metals, 2015, 5, 656-668.	2.3	65
43	Effect of Grain Refinement on Jerky Flow in an Al-Mg-Sc Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2093-2106.	2.2	65
44	Deformation structures and strengthening mechanisms in an Al-Cu alloy subjected to extensive cold rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 702, 53-64.	5.6	65
45	Structural strengthening of an austenitic stainless steel subjected to warm-to-hot working. Materials Characterization, 2011, 62, 432-437.	4.4	63
46	Grain refinement in a Cu–Cr–Zr alloy during multidirectional forging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 380-389.	5.6	62
47	Strengthening mechanisms in a Zr-modified 5083 alloy deformed to high strains. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 620, 246-252.	5.6	62
48	Tempering behavior of a low nitrogen boron-added 9%Cr steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 443-455.	5.6	62
49	Annealing behavior of a 304L stainless steel processed by large strain cold and warm rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 689, 370-383.	5.6	62
50	Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1280-1286.	5.6	60
51	Microstructural evolution in a 5024 aluminum alloy processed by ECAP with and without back pressure. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 178-192.	5.6	59
52	Superplasticity in a 7055 aluminum alloy processed by ECAE and subsequent isothermal rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 407, 62-70.	5.6	58
53	Friction-stir welding of an Al–Mg–Sc–Zr alloy in as-fabricated and work-hardened conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 600, 159-170.	5.6	58
54	On the Precipitation Sequence in a 10%Cr Steel under Tempering. ISIJ International, 2011, 51, 826-831.	1.4	57

#	Article	IF	CITATIONS
55	Superplasticity in a magnesium alloy subjected to isothermal rolling. Scripta Materialia, 2004, 51, 89-93.	5.2	56
56	Effect of Tempering on Microstructure and Mechanical Properties of Boron Containing 10%Cr Steel. ISIJ International, 2011, 51, 1912-1918.	1.4	54
57	Aging behavior of an Al–Cu–Mg alloy. Journal of Alloys and Compounds, 2018, 759, 108-119.	5.5	54
58	Deformation microstructures and tensile properties of an austenitic stainless steel subjected to multiple warm rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 667, 279-285.	5.6	52
59	New grain formation during warm deformation of ferritic stainless steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 161-167.	2.2	51
60	Strain-induced submicrocrystalline grains developed in austenitic stainless steel under severe warm deformation. Philosophical Magazine Letters, 2000, 80, 711-718.	1.2	50
61	Deformation behavior of a modified 5083 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 392, 373-379.	5.6	50
62	Friction-stir welding of ultra-fine grained sheets of Al–Mg–Sc–Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 624, 132-139.	5.6	48
63	Effect of Severe Cold or Warm Deformation on Microstructure Evolution and Tensile Behavior of a 316L Stainless Steel. Advanced Engineering Materials, 2015, 17, 1812-1820.	3.5	46
64	Structural/textural changes and strengthening of an advanced high-Mn steel subjected to cold rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 763-773.	5.6	46
65	Superplastic behavior and microstructure evolution in a commercial Al-Mg-Sc alloy subjected to intense plastic straining. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2383-2392.	2.2	44
66	The crystallography of M ₂₃ C ₆ carbides in a martensitic 9% Cr steel after tempering, aging and creep. Philosophical Magazine, 2013, 93, 2259-2268.	1.6	44
67	Grain refinement and strengthening of a Cu–0.1Cr–0.06Zr alloy subjected to equal channel angular pressing. Philosophical Magazine, 2017, 97, 2053-2076.	1.6	44
68	Achieving high strain rate superplasticity in an Al–Li–Mg alloy through equal channel angular extrusion. Materials Science and Technology, 2005, 21, 408-418.	1.6	43
69	Interrelation between the Portevin Le-Chatelier effect and necking in AlMg alloys. International Journal of Plasticity, 2018, 110, 95-109.	8.8	43
70	Mechanical properties and fracture behavior of an Al–Mg–Sc–Zr alloy at ambient and subzero temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 565, 132-141.	5.6	42
71	On the effect of chemical composition on yield strength of TWIP steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 687, 82-84.	5.6	41
72	Effect of Co on Creep Behavior of a P911ÂSteel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 577-583.	2.2	40

#	Article	IF	CITATIONS
73	Microstructure Evolution in an Advanced 9Âpct Cr Martensitic Steel during Creep at 923ÂK (650°C). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 128-135.	2.2	40
74	Precipitation behavior in an Al–Cu–Mg–Si alloy during ageing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 767, 138369.	5.6	40
75	Mechanisms of Dynamic Recrystallization in Aluminum Alloys. Materials Science Forum, 0, 794-796, 784-789.	0.3	39
76	On the origin of the superior long-term creep resistance of a 10% Cr steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 713, 161-173.	5.6	39
77	Creep behavior of a 10%Cr heat-resistant martensitic steel with low nitrogen and high boron contents at 650â€ ⁻ °C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138353.	5.6	39
78	Microstructural aspects of superior creep resistance of a 10%Cr martensitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 678, 178-189.	5.6	37
79	Effect of plastic deformation on the ageing behaviour of an Al–Cu–Mg alloy with a high Cu/Mg ratio. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 737, 401-412.	5.6	37
80	Grain refinement in an Al-Mg-Sc alloy: Equal channel angular pressing versus friction-stir processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 674, 480-490.	5.6	36
81	Low cycle fatigue behavior of a 10Cr–2W–Mo–3Co–NbV steel. International Journal of Fatigue, 2016, 83, 344-355.	5.7	36
82	Evolution of Lath Substructure and Internal Stresses in a 9% Cr Steel during Creep. ISIJ International, 2017, 57, 540-549.	1.4	35
83	Effect of over-aging on the microstructural evolution in an Al–Cu–Mg–Ag alloy during ECAP at 300°C. Journal of Alloys and Compounds, 2012, 527, 163-175.	5.5	34
84	Creep behavior and microstructure of a 9Cr–3Co–3W martensitic steel. Journal of Materials Science, 2017, 52, 2974-2988.	3.7	34
85	Microstructural evolution and strengthening mechanisms operating during cryogenic rolling of solutionized Al-Cu-Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 82-89.	5.6	34
86	Superplasticity of friction-stir welded Al–Mg–Sc sheets with ultrafine-grained microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 649, 85-92.	5.6	33
87	Creep behavior and microstructural evolution of a 9%Cr steel with high B and low N contents. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 228-241.	5.6	32
88	Pre-strain rolling as an effective tool for suppression of abnormal grain growth in friction-stir welded 6061 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 39-42.	5.6	32
89	Grain boundary assembles developed in an austenitic stainless steel during large strain warm working. Materials Characterization, 2012, 70, 14-20.	4.4	31
90	Strengthening mechanisms of creep-resistant 12%Cr–3%Co steel with low N and high B contents. Journal of Materials Science, 2020, 55, 7530-7545.	3.7	31

#	Article	IF	CITATIONS
91	Microstructure evolution and strengthening mechanisms in friction-stir welded Al–Mg–Sc alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 770, 138540.	5.6	30
92	Partial Grain Refinement in Al-3%Cu Alloy during ECAP at Elevated Temperatures. Materials Transactions, 2009, 50, 101-110.	1.2	29
93	Dislocation glide and dynamic recrystallization in LiF single crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 328, 147-155.	5.6	28
94	The effect of second-phase particles on grain refinement during equal-channel angular pressing in an Al–Cu–Mg–Ag alloy. Journal of Materials Science, 2015, 50, 990-1005.	3.7	28
95	Microstructure evolution and strengthening mechanisms in friction-stir welded TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 746, 248-258.	5.6	28
96	High Strain Rate Superplasticity in an Al-Li-Mg Alloy Subjected to Equal-Channel Angular Extrusion. Materials Transactions, 2002, 43, 2370-2377.	1.2	26
97	Superplasticity in a 7055 aluminum alloy subjected to intense plastic deformation. Materials Science and Technology, 2003, 19, 1491-1497.	1.6	26
98	The precipitation behavior of an Al–Cu–Mg–Ag alloy under ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 588, 65-75.	5.6	26
99	Effect of W on tempering behaviour of a 3Â%Co modified P92 steel. Journal of Materials Science, 2016, 51, 9424-9439.	3.7	26
100	On effect of rhenium on mechanical properties of a high-Cr creep-resistant steel. Materials Letters, 2019, 236, 81-84.	2.6	25
101	On the possibility of producing a nanocrystalline structure in magnesium and magnesium alloys. Scripta Materialia, 1995, 6, 621-624.	0.5	24
102	Effect of microstructural evolution on the cyclic softening of a 10% Cr martensitic steel under low cycle fatigue at 600°C. International Journal of Fatigue, 2020, 134, 105522.	5.7	23
103	Superplasticity of ultrafine-grained Al–Mg–Sc–Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 675, 228-242.	5.6	22
104	Effect of alloying on interfacial energy of precipitation/matrix in high-chromium martensitic steels. Journal of Materials Science, 2017, 52, 4197-4209.	3.7	22
105	Effect of rolling temperature on microstructure and mechanical properties of 18%Mn TWIP/TRIP steels. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 110-117.	5.6	21
106	Grain Refinement Kinetics in a Low Alloyed Cu–Cr–Zr Alloy Subjected to Large Strain Deformation. Materials, 2017, 10, 1394.	2.9	21
107	Impact toughness of a 10% Cr steel with high boron and low nitrogen contents. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 730, 1-9.	5.6	21
108	Microstructural Changes and Strengthening of Austenitic Stainless Steels during Rolling at 473 K. Metals. 2020. 10. 1614.	2.3	21

#	Article	IF	CITATIONS
109	Coarsening of Laves phase and creep behaviour of a Re-containing 10% Cr-3% Co-3% W steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 812, 141137.	5.6	21
110	Mechanical Behavior of an Al–Mg–Mn–Sc Alloy with an Ultrafine Grain Structure at Cryogenic Temperatures. Advanced Engineering Materials, 2015, 17, 1804-1811.	3.5	20
111	Cryogenic properties of Al–Mg–Sc–Zr friction-stir welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 598, 387-395.	5.6	19
112	Effect of Tungsten on Creep Behavior of 9%Cr–3%Co Martensitic Steels. Metals, 2017, 7, 573.	2.3	19
113	Suppression of abnormal grain growth in friction-stir welded Al–Cu–Mg alloy by lowering of welding temperature. Scripta Materialia, 2021, 196, 113765.	5.2	19
114	Effect of Alloying on the Nucleation and Growth of Laves Phase in the 9–10%Cr-3%Co Martensitic Steels during Creep. Metals, 2021, 11, 60.	2.3	19
115	Structural changes of ferritic stainless steel during severe plastic deformation. Scripta Materialia, 1995, 6, 893-896.	0.5	18
116	Microstructure and Mechanical Properties of an Al-Li-Mg-Sc-Zr Alloy Subjected to ECAP. Metals, 2016, 6, 254.	2.3	18
117	Creep strength breakdown and microstructure in a 9%Cr steel with high B and low N contents. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138821.	5.6	18
118	Role of Tungsten in the Tempered Martensite Embrittlement of a Modified 9ÂPct Cr Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 982-998.	2.2	17
119	Effect of the strain rate on the low cycle fatigue behavior of a 10Cr-2W-Mo-3Co-NbV steel at 650 °C. International Journal of Fatigue, 2017, 100, 113-125.	5.7	17
120	High cyclic fatigue performance of Al–Cu–Mg–Ag alloy under T6 and T840 conditions. Transactions of Nonferrous Metals Society of China, 2017, 27, 1215-1223.	4.2	17
121	Strain-induced Z-phase formation in a 9% Cr-3% Co martensitic steel during creep at elevated temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 724, 29-36.	5.6	17
122	Nucleation of W-rich carbides and Laves phase in a Re-containing 10% Cr steel during creep at 650°C. Materials Characterization, 2020, 169, 110651.	4.4	17
123	Ageing response of cold-rolled Al–Cu–Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 781, 139148.	5.6	17
124	Origin of Threshold Stresses in a P92-type Steel. Transactions of the Indian Institute of Metals, 2016, 69, 223-227.	1.5	16
125	Effect of Tungsten on a Dispersion of M(C,N) Carbonitrides in 9Â% Cr Steels Under Creep Conditions. Transactions of the Indian Institute of Metals, 2016, 69, 211-215.	1.5	16
126	Effect of Ni and Mn on the Creep Behaviour of 9–10 %Cr Steels with Low N and High B. Transactions of the Indian Institute of Metals, 2016, 69, 203-210.	1.5	16

#	Article	IF	CITATIONS
127	Fatigue Performance of Friction-Stir-Welded Al-Mg-Sc Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 150-158.	2.2	16
128	Peculiar Spatiotemporal Behavior of Unstable Plastic Flow in an AlMgMnScZr Alloy with Coarse and Ultrafine Grains. Metals, 2017, 7, 325.	2.3	16
129	Low Cycle Fatigue Behavior of a 10% Cr Martensitic Steel at 600°C. ISIJ International, 2015, 55, 2469-2476.	1.4	14
130	Advanced Thermomechanical Processing for a High-Mn Austenitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5704-5708.	2.2	14
131	Low-cyclic fatigue behaviour of an Al–Cu–Mg–Ag alloy under T6 and T840 conditions. Materials Science and Technology, 2017, 33, 688-698.	1.6	14
132	Microstructure and Mechanical Properties of 18%Mn TWIP/TRIP Steels Processed by Warm or Hot Rolling. Steel Research International, 2017, 88, 1600123.	1.8	13
133	Superior creep resistance of a high-Cr steel with Re additives. Materials Letters, 2020, 262, 127183.	2.6	13
134	The Role of Microstructure in Creep Strength of 9-12%Cr Steels. Materials Science Forum, 2016, 879, 36-41.	0.3	12
135	Microstructure and Mechanical Properties of a High-Mn TWIP Steel Subjected to Cold Rolling and Annealing. Metals, 2017, 7, 571.	2.3	12
136	Effect of Cold Plastic Deformation Prior to Ageing on Creep Resistance of an Al-Cu-Mg-Ag Alloy. Materials Science Forum, 0, 794-796, 278-283.	0.3	11
137	Effect of Warm to Hot Rolling on Microstructure, Texture and Mechanical Properties of an Advanced Medium-Mn Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4245-4256.	2.2	11
138	On the mechanisms of nucleation and subsequent development of the PLC bands in an AlMg alloy. Journal of Alloys and Compounds, 2021, 868, 159135.	5.5	11
139	Cost-Affordable Technique Involving Equal Channel Angular Pressing for the Manufacturing of Ultrafine Grained Sheets of an Al-Li-Mg-Sc Alloy. Advanced Engineering Materials, 2010, 12, 735-739.	3.5	10
140	Grain Boundary Assemblies in Dynamically-Recrystallized Austenitic Stainless Steel. Metals, 2016, 6, 268.	2.3	10
141	Effect of Laves Phase on Ductile-Brittle Transition of 12 Pct Cr Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3528-3543.	2.2	9
142	Deformation behavior of friction-stir welded Al-Mg-Mn alloy with ultrafine-grained structure. Materials Characterization, 2022, 185, 111758.	4.4	9
143	Unusual ageing behaviour of friction-stir welded Al–Cu–Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139882.	5.6	8
144	Microstructures and Mechanical Properties of Steels and Alloys Subjected to Large-Strain Cold-to-Warm Deformation. Metals, 2022, 12, 454.	2.3	8

#	Article	IF	CITATIONS
145	Deformation Behavior of High-Mn TWIP Steels Processed by Warm-to-Hot Working. Metals, 2018, 8, 415.	2.3	7
146	Effect of Intense Plastic Straining and Subsequent Heat Treatment on Mechanical Properties of an Al-Li-Mg-Sc-Zr Alloy. Advanced Materials Research, 0, 89-91, 389-394.	0.3	6
147	Superplastic behavior of friction-stir welded Al–Mg–Sc–Zr alloy in ultrafine-grained condition. Transactions of Nonferrous Metals Society of China, 2022, 32, 1083-1095.	4.2	6
148	Effect of Rolling on Mechanical Properties and Fatigue Behavior of an Al-Mg-Sc-Zr Alloy. Materials Science Forum, 0, 794-796, 331-336.	0.3	5
149	Hot Deformation and Dynamic Recrystallization of 18%Mn Twinningâ€Induced Plasticity Steels. Advanced Engineering Materials, 2020, 22, 2000098.	3.5	5
150	Effect of the Thermo-Mechanical Processing on the Impact Toughness of a 12% Cr Martensitic Steel with Co, Cu, W, Mo and Ta Doping. Metals, 2022, 12, 3.	2.3	5
151	The Role of Deformation Banding in Grain Refinement under ECAP. Materials Science Forum, 0, 783-786, 2641-2646.	0.3	4
152	Microstructure Evolution during LCF of a 10%Cr Steel at Room Temperature. Materials Science Forum, 0, 879, 1311-1316.	0.3	4
153	Deformation Microstructures and Mechanical Properties of an Austenitic Stainless Steel Subjected to Warm Rolling. Materials Science Forum, 0, 879, 1414-1419.	0.3	4
154	The Portevin–Le Chatelier effect in an Al-Mg alloy. AIP Conference Proceedings, 2016, , .	0.4	4
155	Effect of normalizing and tempering on structure and mechanical properties of advanced martensitic 10% Cr–3% Co–0.2% Re steel. AIP Conference Proceedings, 2017, , .	0.4	4
156	Effect of Pre-Strain Rolling on Annealing Behavior of Friction-Stir Welded AA6061-T6 Aluminum Alloy. Defect and Diffusion Forum, 0, 385, 355-358.	0.4	4
157	Comparative analysis of the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy peak-aged at relatively low and high temperatures. IOP Conference Series: Materials Science and Engineering, 2019, 672, 012027.	0.6	4
158	Ultrafine-Grained Structure and Mechanical Properties of a High-Mn Twinning Induced Plasticity Steel. Materials Science Forum, 2016, 838-839, 392-397.	0.3	3
159	Effect of ECAP Prior to Aging on Microstructure, Precipitation Behaviour and Mechanical Properties of an Al-Cu-Mg Alloy. Defect and Diffusion Forum, 0, 385, 290-295.	0.4	3
160	Microstructure and Mechanical Properties of an Ultrafine Grained Medium-Mn Steel. Defect and Diffusion Forum, 2018, 385, 308-313.	0.4	3
161	On the Fatigue Performance of Friction-Stir Welded Aluminum Alloys. Materials, 2020, 13, 4246.	2.9	3
162	Effect of creep temperature on Z-phase formation in heat-resistant 9% Cr–3% Co martensitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140271.	5.6	3

#	Article	IF	CITATIONS
163	Nanoscale structural evolution of Al2Cu precipitates in friction-stir welded Al–Cu–Mg alloy. IOP Conference Series: Materials Science and Engineering, 2021, 1014, 012063.	0.6	3
164	Effect of ECAP on Mechanical Properties of an Al-Cu-Mg-Ag-Sc Alloy. Materials Science Forum, 0, 667-669, 967-972.	0.3	2
165	Effect of Pre-Straining Method on Mechanical Properties of Thermo-Mechanically Processed Al-Cu-Mg Alloy. Defect and Diffusion Forum, 0, 385, 364-369.	0.4	2
166	Is Ashby grain-boundary hardening model applicable for high strains?. Transactions of Nonferrous Metals Society of China, 2019, 29, 2245-2251.	4.2	2
167	On friction stir welding of a medium manganese austenitic steel. Philosophical Magazine, 2021, 101, 576-597.	1.6	2
168	Strain and temperature contributions to structural evolution in a Re-containing 10% Cr-3% Co-3% W steel during creep. Materials at High Temperatures, 2021, 38, 237-246.	1.0	2
169	Effect of Annealing on Structure and Mechanical Behavior of an AA2139 Alloy. Materials Science Forum, 0, 783-786, 258-263.	0.3	1
170	Friction Stir Welding of an Al-Mg-Sc-Zr Alloy with Ultra-Fined Grained Structure. Materials Science Forum, 0, 794-796, 365-370.	0.3	1
171	Effect of Extensive IsothermalÂRolling on Microstructure and Mechanical Properties of an Al-Mg-Sc Alloy. Materials Science Forum, 0, 794-796, 1187-1192.	0.3	1
172	Effect of Friction Stir Welding on Microstructure of a 5024 Alloy. Materials Science Forum, 2016, 879, 2249-2254.	0.3	1
173	Superplasticity of Friction-Stir Welded Al-Mg-Sc Alloy with Ultrafine-Grained Microstructure Obtained by Warm Severe Plastic Deformation. Materials Science Forum, 2016, 879, 2395-2400.	0.3	1
174	Superplastic Behavior of Friction-Stir Welded Joints of an Al-Mg-Sc Alloy with Ultrafine-Grained Microstructure. Materials Science Forum, 0, 838-839, 338-343.	0.3	1
175	Ultrafine-Grained Structure Produced by FSW and ECAP in Al-Mg-Sc-Zr Alloy: Comparison. Materials Science Forum, 2016, 838-839, 379-384.	0.3	1
176	Microstructure and mechanical properties of Al–Mg–Mn sheets produced by equal-channel angular pressing and subsequent hot rolling. AIP Conference Proceedings, 2018, , .	0.4	1
177	Friction-Stir Welding of Work-Hardened Al-Mg Alloy with Nanoscale Particles. Defect and Diffusion Forum, 0, 385, 359-363.	0.4	1
178	Friction-stir welding of Al-Mg-Mn-Zr sheets by using a hemispherical tool. IOP Conference Series: Materials Science and Engineering, 2019, 672, 012040.	0.6	1
179	Effect of Long-Term Creep on Microstructure of a 9% Cr Heat Resistant Steel. Materials Science Forum, 0, 783-786, 1839-1844.	0.3	0
180	Effect of deformation structure on fatigue behavior of an Al-Mg-Sc alloy. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012164.	0.6	0

#	Article	IF	CITATIONS
181	Analysis of the tensile behavior of high-Mn TWIP steel based on the microstructural evolution. AIP Conference Proceedings, 2016, , .	0.4	0
182	Driving and Retarding Forces in Tempered Martensite Lath Structure. , 0, , 125-130.		0
183	Mechanism of Grain Refinement during Equal-Channel Angular Pressing at Intermediate Temperature in an Al-Mg-Sc Alloy. , 2016, , 239-244.		Ο
184	Friction-Stir Welding of Zr-Modified AA5083 Sheets in Different Conditions. Materials Science Forum, 0, 877, 365-370.	0.3	0
185	Mechanical properties and structure of friction stir welds of rolled Zr-modified AA5083 alloy. AIP Conference Proceedings, 2016, , .	0.4	Ο
186	Mechanical Behavior of High-Mn Steels Processed by Hot Rolling. Materials Science Forum, 2018, 941, 299-304.	0.3	0
187	Dynamic recrystallization of a high-Mn TWIP steel during multiple forging at 800°C. AIP Conference Proceedings, 2018, , .	0.4	Ο
188	Short-term creep of advanced re-containing 10% Cr – 3% Co – 3% W martensitic steel at elevated temperature. AIP Conference Proceedings, 2018, , .	0.4	0
189	Thermal stability of recycled copper. AIP Conference Proceedings, 2018, , .	0.4	Ο
190	Effect of hot working conditions on microstructure and mechanical properties of a high-Mn TWIP steel. AIP Conference Proceedings, 2018, , .	0.4	0
191	Tensile behavior of friction stir welded Al-Mg-Si alloy. AIP Conference Proceedings, 2019, , .	0.4	Ο
192	Effect of pre-strain rolling path on abnormal grain growth in friction-stir welded Al-Mg-Si alloy. AIP Conference Proceedings, 2019, , .	0.4	0
193	Driving and Retarding Forces in Tempered Martensite Lath Structure. , 2016, , 125-130.		0
194	Mechanism of Grain Refinement During Equal-Channel Angular Pressing at Intermediate Temperature in an Al-Mg-Sc Alloy. , 0, , 239-244.		0