Liqing Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7886660/publications.pdf

Version: 2024-02-01

623734 610901 30 594 14 24 citations g-index h-index papers 30 30 30 478 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review. Acta Metallurgica Sinica (English Letters), 2013, 26, 1-15.	2.9	137
2	Processing, Microstructures, and Mechanical Properties of Magnesium Matrix Composites: A Review. Acta Metallurgica Sinica (English Letters), 2014, 27, 762-774.	2.9	77
3	An investigation of cobalt phase structure in WC–Co cemented carbides before and after deep cryogenic treatment. International Journal of Refractory Metals and Hard Materials, 2015, 51, 201-206.	3.8	33
4	Influence of Deep Cryogenic Treatment on Microstructures and Mechanical Properties of an Ultrafine-Grained WC-12Co Cemented Carbide. Acta Metallurgica Sinica (English Letters), 2014, 27, 894-900.	2.9	32
5	Dependence of Grain Size on Mechanical Properties and Microstructures of High Manganese Austenitic Steel. Procedia Engineering, 2014, 81, 143-148.	1.2	31
6	Microstructures and High-Temperature Mechanical Properties of a Martensitic Heat-Resistant Stainless Steel 403Nb Processed by Thermo-Mechanical Treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 1498-1507.	2.2	23
7	Effect of Cerium on High-Temperature Oxidation Resistance of 00Cr17NbTi Ferritic Stainless Steel. Acta Metallurgica Sinica (English Letters), 2014, 27, 501-507.	2.9	23
8	Effect of W and Ce additions on the electrochemical corrosion behaviour of 444-type ferritic stainless steel. Corrosion Engineering Science and Technology, 2018, 53, 199-205.	1.4	19
9	Laves phase precipitation behavior and high-temperature strength of W-containing ferritic stainless steels. Journal of Materials Research and Technology, 2020, 9, 2127-2135.	5.8	18
10	Microstructural Characteristics and Impact Fracture Behaviors of a Novel High-Strength Low-Carbon Bainitic Steel with Different Reheated Coarse-Grained Heat-Affected Zones. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 6258-6268.	2.2	18
11	High-temperature Oxidation Behavior of a High Manganese Austenitic Steel Fe–25Mn–3Cr–3Al–0.3C–0.01N. Acta Metallurgica Sinica (English Letters), 2014, 27, 401-406.	2.9	17
12	Effect of simulated cooling time on microstructure and toughness of CGHAZ in novel high-strength low-carbon construction steel. Science and Technology of Welding and Joining, 2020, 25, 169-177.	3.1	16
13	Microstructures and Mechanical Properties of a Wear-Resistant Alloyed Ductile Iron Austempered at Various Temperatures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3627-3634.	2.2	15
14	Understanding the Role of Copper Addition in Low-Temperature Toughness of Low-Carbon, High-Strength Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5627-5639.	2.2	15
15	Precipitation Behavior of Laves Phase in the Vicinity of Oxide Film of Ferritic Stainless Steel: Selective Oxidation-Induced Precipitation. Oxidation of Metals, 2020, 93, 195-213.	2.1	15
16	Microstructure and Mechanical Properties of a Wear-Resistant As-Cast Alloyed Bainite Ductile Iron. Acta Metallurgica Sinica (English Letters), 2014, 27, 476-482.	2.9	14
17	The Role of Intercritical Annealing in Enhancing Low-temperature Toughness of Fe-C-Mn-Ni-Cu Structural Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 2912-2921.	2.2	13
18	The role of copper in microstructure and toughness of intercritically reheated coarse grained heat affected zone in a high strength low alloy steel. Materials Characterization, 2021, 181, 111511.	4.4	13

#	Article	IF	CITATIONS
19	On the role of Cu addition in toughness improvement of coarse grained heat affected zone in a low carbon high strength steel. Journal of Materials Science, 2020, 55, 10863-10877.	3.7	10
20	On the Microstructural Strengthening and Toughening of Heat-Affected Zone in a Low-Carbon High-Strength Cu-Bearing Steel. Acta Metallurgica Sinica (English Letters), 2021, 34, 617-627.	2.9	10
21	Effect of Isothermal Temperature on Microstructure and Mechanical Properties of High Al–Low Si TRIP Steel. Acta Metallurgica Sinica (English Letters), 2014, 27, 389-394.	2.9	9
22	Tailoring Mechanical Properties of a Low Carbon Cu-Containing Structural Steel by Two-Step Intercritical Heat Treatment. Metals and Materials International, 2019, 25, 1477-1487.	3.4	8
23	Microstructures and Mechanical Properties of a New Multi-functional 460ÂMPa Grade Construction Structural Steel. Acta Metallurgica Sinica (English Letters), 2022, 35, 1131-1142.	2.9	7
24	Processing, Microstructures and Mechanical Properties of Ultra-high Strength Steel Sheet. Procedia Engineering, 2014, 81, 84-89.	1.2	5
25	Structure–Mechanical Property–Formability Relationships for 444-Type W-Containing Ferritic Stainless Steels. Journal of Materials Engineering and Performance, 2021, 30, 467-478.	2.5	4
26	Structure and Electrochemical Behavior of the Rust on 690 MPa Grade Construction Steel in a Simulated Industrial Atmosphere. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 3044-3056.	2.2	4
27	Significant Grain Refinement in the Simulated Heat-Affected Zone (HAZ) of Ferritic Stainless Steels by Alloying with Tungsten. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2719-2723.	2.2	3
28	The mechanism of fire resistance of a low carbon high-strength multi-functional steel for building construction. Journal of Materials Science, 2022, 57, 7706-7718.	3.7	3
29	Achieving Excellent Strengthâ€Ductility Balance and Lower Yield Ratio in a 690 MPaâ€Grade Multiphase Construction Steel. Steel Research International, 2022, 93, .	1.8	2
30	Prior Warm Deformation Dependence on Microstructural Evolution and Tensile Properties of a High-Mn Steel. Jom, 2019, 71, 1303-1312.	1.9	0