Aaron W Bell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/788647/publications.pdf

Version: 2024-02-01

		686830	642321
36	639	13	23
papers	citations	h-index	g-index
38	38	38	913
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chronic Activation of LXRα Sensitizes Mice to Hepatocellular Carcinoma. Hepatology Communications, 2022, 6, 1123-1139.	2.0	5
2	Personalized Medicine for Liver Disease: From Molecular Mechanisms to Potential Targeted Therapies. Journal of Personalized Medicine, 2022, 12, 663.	1.1	0
3	Investigating Susceptibility of êžμâ€cateninâ€mutated Hepatocellular Carcinoma to Checkpoint Inhibitors. FASEB Journal, 2022, 36, .	0.2	O
4	NOTCH-YAP1/TEAD-DNMT1 Axis Drives Hepatocyte Reprogramming Into Intrahepatic Cholangiocarcinoma. Gastroenterology, 2022, 163, 449-465.	0.6	23
5	Understanding Molecular Heterogeneity in Hepatocellular Carcinoma. FASEB Journal, 2022, 36, .	0.2	O
6	Dual β-Catenin and γ-Catenin Loss in Hepatocytes Impacts Their Polarity through Altered Transforming Growth Factor-β and Hepatocyte Nuclear Factor 4α Signaling. American Journal of Pathology, 2021, 191, 885-901.	1.9	3
7	The Inside-Out of End-Stage Liver Disease: Hepatocytes are the Keystone. Seminars in Liver Disease, 2021, 41, 213-224.	1.8	13
8	Nuclear factor erythroid $2\hat{a}$ "related factor 2 and $\hat{l}^2\hat{a}$ Catenin Coactivation in Hepatocellular Cancer: Biological and Therapeutic Implications. Hepatology, 2021, 74, 741-759.	3.6	32
9	Hepatocyte Nuclear Factor 4 alpha 2 Messenger RNA Reprograms Liverâ€Enriched Transcription Factors and Functional Proteins in Endâ€Stage Cirrhotic Human Hepatocytes. Hepatology Communications, 2021, 5, 1911-1926.	2.0	7
10	Compensatory hepatic adaptation accompanies permanent absence of intrahepatic biliary network due to YAP1 loss in liver progenitors. Cell Reports, 2021, 36, 109310.	2.9	17
11	Diabetic Retinopathy Screening Programme: Attendance, Barriers and Enablers amongst Young People with Diabetes Mellitus Aged 12–26 Years. International Journal of Translational Medicine, 2021, 1, 154-162.	0.1	O
12	$\hat{l}^2\text{-Catenin-NF-}\hat{l}^2\text{B-CFTR}$ interactions in cholangiocytes regulate inflammation and fibrosis during ductular reaction. ELife, 2021, 10, .	2.8	9
13	Cellular Location of HNF4α is Linked With Terminal Liver Failure in Humans. Hepatology Communications, 2020, 4, 859-875.	2.0	12
14	Concomitant NFE2L2 and CTNNB1 mutations in a subset of HCC patients: Synergy between Nrf2 and Wnt pathway in hepatocarcinogenesis. FASEB Journal, 2020, 34, 1-1.	0.2	0
15	Investigating the role of Fzdâ€7 in liver donation and regeneration. FASEB Journal, 2020, 34, 1-1.	0.2	O
16	Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis. Nature Communications, 2019, 10, 3126.	5.8	124
17	Elimination of Wnt Secretion From Stellate Cells Is Dispensable for Zonation and Development of Liver Fibrosis Following Hepatobiliary Injury. Gene Expression, 2019, 19, 121-136.	0.5	11
18	\hat{l}^2 -Catenin and Yes-Associated Protein 1 Cooperate in Hepatoblastoma Pathogenesis. American Journal of Pathology, 2019, 189, 1091-1104.	1.9	37

#	Article	IF	Citations
19	Loss of Wnt Secretion by Macrophages Promotes Hepatobiliary Injury after Administration of 3,5-Diethoxycarbonyl-1, 4-Dihydrocollidine Diet. American Journal of Pathology, 2019, 189, 590-603.	1.9	24
20	mTOR inhibition affects Yap $1-\hat{l}^2$ -catenin-induced hepatoblastoma growth and development. Oncotarget, 2019, 10, 1475-1490.	0.8	13
21	mTOR Inhibition Delays Hepatoblastoma Growth in a Relevant Mouse Model. FASEB Journal, 2019, 33, 662.66.	0.2	0
22	NFE2L2 synergizes with betaâ€catenin gene mutations to induce HCC in patients and mice. FASEB Journal, 2019, 33, 126.12.	0.2	1
23	FGF19 and Met coâ€activation in murine liver induces HCC: Biological and clinical relevance. FASEB Journal, 2019, 33, 496.36.	0.2	0
24	Liverâ€enriched transcription factor expression relates to chronic hepatic failure in humans. Hepatology Communications, 2018, 2, 582-594.	2.0	28
25	The Effect of Selective c-MET Inhibitor on Hepatocellular Carcinoma in the MET-Active, β-Catenin-Mutated Mouse Model. Gene Expression, 2018, 18, 135-147.	0.5	19
26	Resetting the transcription factor network reverses terminal chronic hepatic failure. Journal of Clinical Investigation, 2015, 125, 1533-1544.	3.9	89
27	GPC3â€CD81 axis in the HCV mediated liver carcinogenesis. FASEB Journal, 2015, 29, 611.9.	0.2	1
28	Hepatocyte Nuclear Factor 4 alpha (HNF4 \hat{l} ±) is involved in regulation of hepatocyte proliferation. FASEB Journal, 2010, 24, 236.2.	0.2	0
29	Investigation of the Role of Glypican 3 in Liver Regeneration and Hepatocyte Proliferation. FASEB Journal, 2010, 24, 39.1.	0.2	0
30	Liver Specific Ablation of Integrin Linked Kinase in Mice Results in Enhanced and Prolonged cell proliferation After Phenobarbital Administration. FASEB Journal, 2009, 23, 117.7.	0.2	0
31	Investigation of the Role of Glypican 3 in Rat Hepatocyte Growth and Liver Regeneration. FASEB Journal, 2008, 22, 1124.2.	0.2	0
32	Analyses of Jagged1 and Notch1 in Rat―and Human―Hepatocyte Culture: Differentiation and Proliferation Conditions affect receptor and ligand of Notch Pathway FASEB Journal, 2008, 22, 1124.5.	0.2	0
33	Phenobarbital regulates nuclear expression of HNF- $4\hat{l}\pm$ in mouse and rat hepatocytes independent of CAR and PXR. Hepatology, 2006, 44, 186-194.	3.6	36
34	The five amino acid-deleted isoform of hepatocyte growth factor promotes carcinogenesis in transgenic mice. Oncogene, 1999, 18, 887-895.	2.6	60
35	Transcriptional regulation of the hepatocyte growth factor (HGF) gene by the Sp family of transcription factors. Oncogene, 1997, 14, 3039-3049.	2.6	36
36	Rapid induction of mRNAs for liver regeneration factor and insulin-like growth factor binding protein-1 in primary cultures of rat hepatocytes by hepatocyte growth factor and epidermal growth factor. Hepatology, 1994, 20, 955-960.	3.6	39